Homework 8 Answers

BSTA 550

Chapter	Turn In	Extra Problems
25	TB # 18, NTB # 1	# 1, 4, 8, 17, 23, 24
26*	TB # 12**, NTB # 2, 3	Slide examples: 2, 3.3, 4 # 7, 9, 19, 20 Slide examples: 3
27	TB # 12***	# 6, 8, 13, 17 Slide examples: 1.2
28	TB # 18	TB # 1, 10
29	NTB #4	
30		TB $\#$ 4, 7-12

^{*} Although within Chapter 26, these exercises are primarily practicing the material from Chapter 25.

Non-textbook problems

• #1:

^{**} For this problem, you only need to set up the integrals!!

^{***} For Ch 27 # 12, in order to find the conditional densities in parts (a) and (b), you will need to calculate $f_Y(y)$ for the specific regions of y specified. After finding the conditional densities in parts (a) and (b), also calculate the conditional probabilities below. Please submit these together with your other work in parts (a) and (b): Find $\mathbb{P}[0.5 < X < 3|Y = 4]$. Find $\mathbb{P}[0.5 < X < 3|Y = 7]$.

Textbook problems

There are answers at the back of the book!! Selected answers (or hints) not provided at the end the book:

- Chapter 25
 - # 4: 7/16

- # 8: (a)
$$\frac{25}{228}$$
 (b) $f_X(x) = \frac{1}{12}(x+1)$, for $0 \le x \le 4$ (c) $f_Y(y) = \frac{3}{76}(y^2+1)$, for $0 \le y \le 4$

- # 18: 5/6
- $\ \# \ 24 \hbox{:} \ \ ({\bf a}) \ f_X(x) = -2e^{-2x} + 2e^{-x}, \ \text{for} \ x \geq 0 \qquad ({\bf b}) \ f_Y(y) = 2e^{-2y}, \ \text{for} \ y \geq 0$
- Chapter 26
 - # 12: (b) $\frac{233}{256}$ (c) $\frac{65}{256}$ (d) $\frac{1}{512}$
 - # 20: (a) Yes. (b) $\frac{15}{16}$
 - NTB # 3: (b) 0.09999546 (d) $f_Z(z) = \left(\frac{11}{5} \frac{2z}{5}\right)e^{-2z}$, for what values of z?
- Chapter 27

- # 6:
$$f_{X|Y}(x|y) = \frac{e^{-x/4 - y/5}}{4(e^{-y/5} - e^{-9y/20})}$$
, for $0 < x < y$

- # 8:
$$f_{X|Y}(x|y) = \frac{1-x^2}{1-y-\frac{(1-y)^3}{3}}$$
, for $0 \le x, 0 \le y, x+y \le 1$

$$- \# 12$$
: (a) $f_{X|Y}(x|y) = \frac{1}{2}$ (c) $\frac{4}{7}$

• Chapter 28

$$- # 10:$$
 (a) $8/9$ (b) $14/3$

$$- # 18: 4/5$$

• Chapter 29

$$- \# 10$$
: (a) $26/81$ (b) $74/9$

$$- \# 14$$
: (a) 67/3 (b) 1/14 (c) 25/12 (d) $\sqrt{25/12}$

c)
$$25/12$$
 (d

$$- # 26: 250$$

-# 32: See notes (or book) for the proof from the discrete random variables case. The proof doesn't depend on what type of random variable (discrete vs. continuous) is being used.

- NTB # 3: (a) 63 (b) 287/3 (c) -1, 41/3 (d) -7, 287/3
- Chapter 30
 - # 4: $f_x(x) = 1/2$ for $2 \le x \le 4$
 - # 8: (a) T (b) T (c) F
 - # 10: (a) F (b) T
 - # 12: (a) T (b) T (c) F (d) T