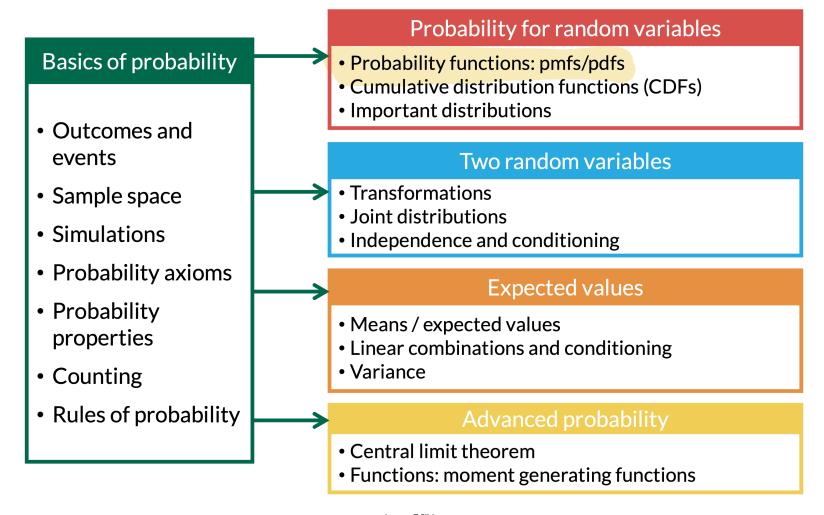
Lesson 7: Probability Mass Functions (pmf's)

Meike Niederhausen and Nicky Wakim

2025-10-20

- 1. Identify a probability mass function (pmf) from past simulations
- 2. Identify a binomial random variable and its parameters from a word problem
- 3. Use R to calculate probabilities and simulate binomial random variables

Where are we?



- 1. Identify a probability mass function (pmf) from past simulations
- 2. Identify a binomial random variable and its parameters from a word problem
- 3. Use R to calculate probabilities and simulate binomial random variables

From Lesson 2: Types of random variables

There are two types of random variables:

- Discrete random variables (RVs): the set of possible values is either finite or can be put into a countably infinite list
 - You could theoretically list the specific possible outcomes that the variable can take
 - If you sum the rolls of three dice, you must get a whole number. For example, you can't get any number between 3 and 4.

- Ontinuous random variables (F
- Continuous random variables (RVs): take on values from continuous intervals, or unions of continuous intervals
 - Variable takes on a range of values, but there are infinitely possible values within the range
 - If you keep track of the time you sleep, you can sleep for 8 hours or 7.9 hours or 7.99 hours or 7.999 hours ...
- **Discrete random variables** (RVs) are a little easier to simulate right now
 - We will only do discrete RVs today

What is a probability mass function?

Definition: probability distribution or probability mass function (pmf)

The **probability distribution** or **probability mass function** (**pmf**) of a discrete r.v. X is defined for every number x by

$$p_X(x) = \mathbb{P}(X = x) = \mathbb{P}(\text{all}(\omega) \in S : X(\omega) = x)$$

From Lesson 2: Simulating two rolls (1/2)

Example: Simulating Two Rolls of a Fair Four-Sided Die

We're going to roll two four-sided die. Let X be the sum of two rolls. How would we simulate X?

```
1 reps <- 100000
2 simulations <- replicate(reps, sample(x = 1:4, size = 2, replace = TRUE))</pre>
```

• Let's show the first 14 simulations

```
1 simulations[, 1:14]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

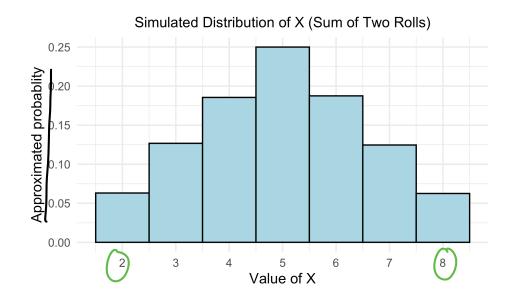
[1,] 3 2 1 1 1 3 3 4 1 4 4 2 3 3 3 [2,] 4 2 2 3 4 1 4 2 1 1 4 4 3 3
```

• X is the sum of the two rolls: we could calculate that for each column

```
1 X_simulated <- apply(simulations, 2, sum)
2 X_simulated[1:14]
[1] 7 4 3 4 5 4 7 6 2 5 8 6 6 6</pre>
```

From Lesson 2: Simulating two rolls (2/2)

▶ Plot simulated distribution of X



Visualization of approx pmf

• For the RV X, we can find the probability for each possible value, $P(X=x)=p_X(x)$:

$$p_X(x) = egin{cases} rac{4-|x-5|}{16}, & x = 2, 3, 4, 5, 6, 7, 8 \ 0, & ext{otherwise} \end{cases}$$

Remarks on the pmf

Properties of pmf

A pmf $p_X(x)$ must satisfy the following properties:

- $0 \le p_X(x) \le 1$ for all x
- $\bullet \sum_{\{all \ x\}} p_X(x) = 1$] Sum across all probs must = 1
- Some distributions depend on parameters
 - Each value of a parameter gives a different pmf
 - In previous example, the number of dice rolled was a parameter
 - We rolled 2 dice
 - o If we rolle d 4 dice, we'd get a different pmf!
 - The collection of all pmf's for different values of the parameters is called a **family** of pmf's

- 1. Identify a probability mass function (pmf) from past simulations
 - 2. Identify a binomial random variable and its parameters from a word problem
- 3. Use R to calculate probabilities and simulate binomial random variables

Binomial random variables

• One specific type of discrete random variable is a binomial random variable

Binomial random variable

- X is a binomial random variable if it represents the number of successes in n independent replications (or trials) of an experiment where
 - Each replicate has two possible outcomes: either **success** or **failure**
 - The probability of success is p
 - The probability of failure is q=1-p
- A binomial random variable takes on values $0, 1, 2, \ldots, n$.
- ullet If a r.v. X is modeled by a Binomial distribution, then we write in shorthand $X \sim \mathrm{Binom}(n,p)$
- Quick example: The number of heads in 3 tosses of a fair coin is a binomial random variable with parameters n=3 and p=0.5.

Binomial family of distributions

Distribution (or pmf) of a Binomial random variable

Let X be the total number of successes in n independent trials, each with probability p of a success. Then probability of observing exactly \mathfrak{g} successes in n independent trials is

$$P(X=x) = (n) p(1-p)(n-x), x = 0, 1, 2, ..., n$$

$$prob of success$$

$$failed$$

• The parameters of a binomial distribution are p and n.

Binomial distribution: R commands

R commands with their input and output:

r commands .	With their inpat and output.	· Lations		
R code	What does it return?	simulations		
rbinom()	returns sample of random variables with specified binomial distribution			
dpinom()	returns <u>probability</u> of getting certain number of successes			
poinom()	returns cumulative probability of getting certain number or less successes	$ P(X \leq X) $	OV	$P(X \ge x)$ if lower tail=F
qpinom()	returns number of successes corresponding to desired quantile	put		
	$P(X \leq R) = R$			

- 1. Identify a probability mass function (pmf) from past simulations
- 2. Identify a binomial random variable and its parameters from a word problem

3. Use R to calculate probabilities and simulate binomial random variables

Falls in Older Adults (1/5)

Example 1: Falls in Older Adults

A major public health concern is falls among older adults (age 65+). National data suggests that 25% of older adults will experience at least one fall within a given year. A community health program is tracking a random group of n=8 older adults for one year. Assume the likelihood of falling is independent from person to person.

Let X be the random variable representing the number of individuals in this group who experience at least one fall.

- 1. What is the sample space for the random variable X?
- 2. Write the probability mass function (pmf) for X.
- 3. Use R to calculate the probability for each possible value of X.
- 4. Make a bar plot of the pmf.
- 5. Simulate X for 10000 groups and plot the approximated pmf.

Falls in Older Adults (2/5)

Example 1: Falls in Older Adults

1. What is the sample space for the random variable X?

$$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

$$S \neq \{0, 8\}$$

$$5 \neq \{0, 8\}$$

$$5 \neq \{0, 8\}$$

$$6 \neq \{0, 1, 5, 6, 7, 8\}$$

Falls in Older Adults (3/5)

2. Write the probability mass function (pmf) for X.

$$n = 8$$

 $p = 0.25$

$$ag{ning} P(X=x) = inom{n}{x} p^x (1-p)^{n-x}, x=0,1,2,\ldots,n$$

$$P(\chi = \chi) = \begin{pmatrix} g \\ \chi \end{pmatrix} 0.25^{\chi} (1-0.25)^{g-\chi}$$

for
$$x = 0, 1, 2, ..., 8$$

Falls in Older Adults (4/6)

Example 1: Falls in Older Adults

3. Use R to calculate the probability for each possible value of X.

```
1 n = 8
  p = 0.25 P(X = X)
  dbinom(0, size = n, prob = p)
[1] 0.1001129 \times = 0
  falls <- tibble(
    x = 0:n, -> (olumn 1
    prob = dbinom(x, size = n, prob = p)
   data. frame()
```

```
falls
# A tibble: 9 \times 2
              prob
             <dbl>
      0 0.100
       1 0.267
      2 0.311
      3 0.208
      4 0.0865
      5 0.0231
      6 0.00385
      7 0.000366
      8 0.0000153
```

Falls in Older Adults (5/6)

Example 1: Falls in Older Adults

4. Make a bar plot of the pmf.

```
library(ggplot2)
                                                               Probability mass function (pmf) of X
                                                     0.3
ggplot(falls, aes(x = x) y = prob)) +
  geom col() +
  labs(
                                                   Probability
  title = "Probability mass function (pmf
      = "Number of adults (x)",
        "Probability"
                                   P(X=0)
                                                                    Number of adults (x)
                                      = 0.100
```

Falls in Older Adults (6/6)

Example 1: Falls in Older Adults

5. Simulate X for 10000 groups and plot the approximated pmf.

```
set_seed(4764)
  reps = 10000
  sims = rbinom(n = reps,
                size = n,
                prob = p
  sims %>% head(..
  falls2 < - tibble(x = 0:n) %>%
2 rowwise() %>%
    mutate(prob = sum(sims == x) / reps)
```

```
ggplot(falls2, aes(x = x, y = prob)) +
geom_col() +
tabs(

title = "Approximate probability mass f
x = "Number of adults (x)",
y = "Approximate Probability"
)
```

