Lesson 8: Probability distribution functions (PDFs)

Meike Niederhausen and Nicky Wakim 2025-10-20

- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables.
- 3. Use R to simulate known continuous distributions.

Where are we?

Probability for random variables Basics of probability Probability functions: pmfs/pdfs Cumulative distribution functions (CDFs) Important distributions Outcomes and events Two random variables Transformations Sample space Joint distributions Simulations Independence and conditioning Probability axioms **Expected values** Probability Means / expected values properties Linear combinations and conditioning Variance Counting Rules of probability Advanced probability Central limit theorem Functions: moment generating functions

- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables.
- 3. Use R to simulate known continuous distributions.

Discrete vs. Continuous RVs

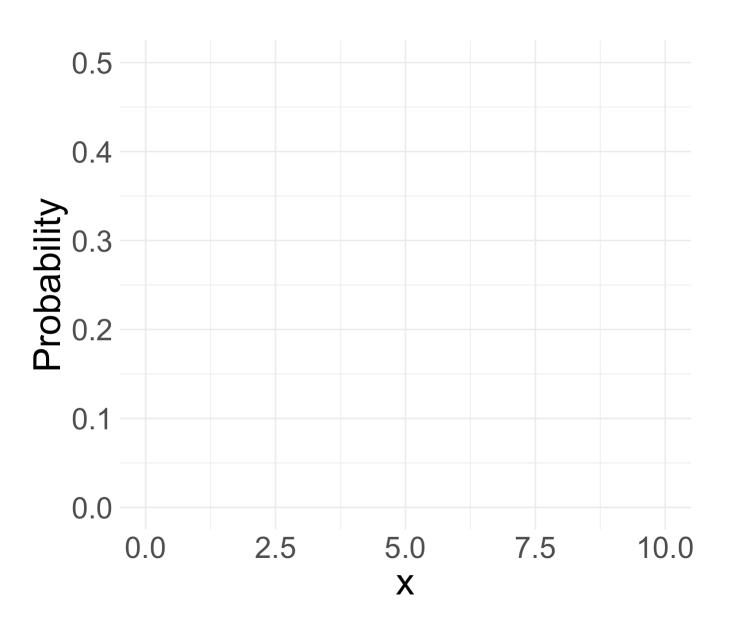
- For a **discrete** RV, the set of possible values is either finite or can be put into a countably infinite list.
- **Continuous** RVs take on values from continuous *intervals*, or unions of continuous intervals

	Discrete	Continuous
probability	mass (probability mass	density (probability density
function	function; PMF)	function; PDF)
	$0 \le p_X(x) \le 1$	$0 \le f_X(x)$
		(not necessarily ≤ 1)
	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
	$P(0 \le X \le 2)$	$P(0 \le X \le 2)$
	= P(X = 0) + P(X = 1) +	$= \int_0^2 f_X(x) dx$
	P(X=2)	-
	if X is integer valued	
	$P(X \le 3) \ne P(X < 3)$	$P(X \le 3) = P(X < 3)$
	when $P(X=3) \neq 0$	since $P(X=3)=0$ always
cumulative	$F_X(a) = P(X \le a)$	$F_X(a) = P(X \le a)$
distribution	$= \sum_{x \le a} P(X = a)$	$= \int_{-\infty}^{a} f_X(x) dx$
function	graph of CDF is a	graph of CDF is
(CDF)	step function with jumps	nonnegative and
$F_X(x)$	of the same size as	continuous, rising
	the mass, from 0 to 1	up from 0 to 1
examples	counting: defects, hits,	lifetimes, waiting times,
	die values, coin heads/tails,	height, weight, length,
	people, card arrangements,	proportions, areas, volumes,
	trials until success, etc.	physical quantities, etc.
named	Bernoulli, Binomial,	Continuous Uniform,
distributions	Geometric, Negative	Exponential, Gamma,
	Binomial, Poisson, Hypergeometric,	Beta, Normal
	Discrete Uniform	
expected	$\mathbb{E}(X) = \sum_{x} x p_X(x)$	$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$
value	$\mathbb{E}(g(X)) = \sum_{x} g(x) p_X(x)$	$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
$\mathbb{E}(X^2)$	$\mathbb{E}(X^2) = \sum_{x} x^2 p_X(x)$	$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$
variance	Var(X) =	Var(X) =
	$\mathbb{E}(X^2) - (\mathbb{E}(X))^2$	$\mathbb{E}(X^2) - (\mathbb{E}(X))^2$
std. dev.	$\sigma_X = \sqrt{\operatorname{Var}(X)}$	$\sigma_X = \sqrt{\operatorname{Var}(X)}$

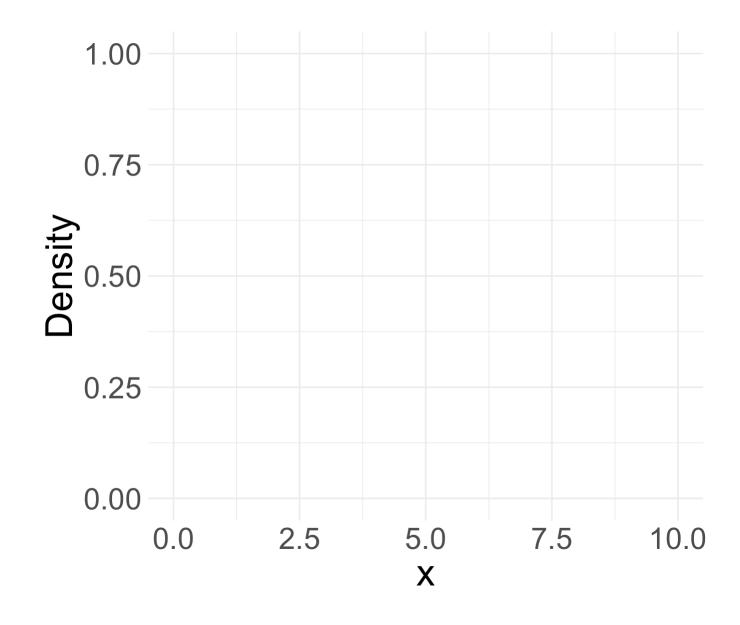
Figure from Introduction to Probability TB (pg. 301)

How to define probabilities for continuous RVs?

Discrete RV X:



Continuous RV X:



ullet pmf: $p_X(x) = P(X=x)$

- density: $f_X(x)$
- ullet probability: $P(a \leq X \leq b) = \int_a^b f_X(x) dx$

What is a probability density function?

Probability density function

The probability distribution, or **probability density function (pdf)**, of a continuous random variable X is a function $f_X(x)$, such that for all real values a, b with $a \leq b$,

$$\mathbb{P}(a \leq X \leq b) = \int_a^b f_X(x) dx$$

Remarks:

- 1. Note that $f_X(x)
 eq \mathbb{P}(X=x)!!!$
- 2. In order for $f_X(x)$ to be a pdf, it needs to satisfy the properties
 - $f_X(x) \ge 0$ for all x
 - $ullet \int_{-\infty}^{\infty} f_X(x) dx = 1$

- 1. Distinguish between discrete and continuous random variables.
 - 2. Calculate probabilities for continuous random variables.
- 3. Use R to simulate known continuous distributions.

Let's demonstrate the PDF with an example (1/5)

Example 1.1

Let
$$f_X(x)=2$$
, for $a\leq x\leq 3$.

1. Find the value of a so that $f_X(x)$ is a pdf.

Let's demonstrate the PDF with an example (2/5)

Example 1.2

Let $f_X(x)=2$, for $a\leq x\leq 3$.

2. Find $\mathbb{P}(2.7 \leq X \leq 2.9)$.

Let's demonstrate the PDF with an example (3/5)

Example 1.3

Let $f_X(x)=2$, for $a\leq x\leq 3$.

3. Find $\mathbb{P}(2.7 < X \leq 2.9)$.

Let's demonstrate the PDF with an example (4/5)

Example 1.4

Let $f_X(x)=2$, for $a\leq x\leq 3$.

4. Find $\mathbb{P}(X=2.9)$.

Let's demonstrate the PDF with an example (5/5)

Example 1.5

Let $f_X(x)=2$, for $a\leq x\leq 3$.

5. Find $\mathbb{P}(X \leq 2.8)$.

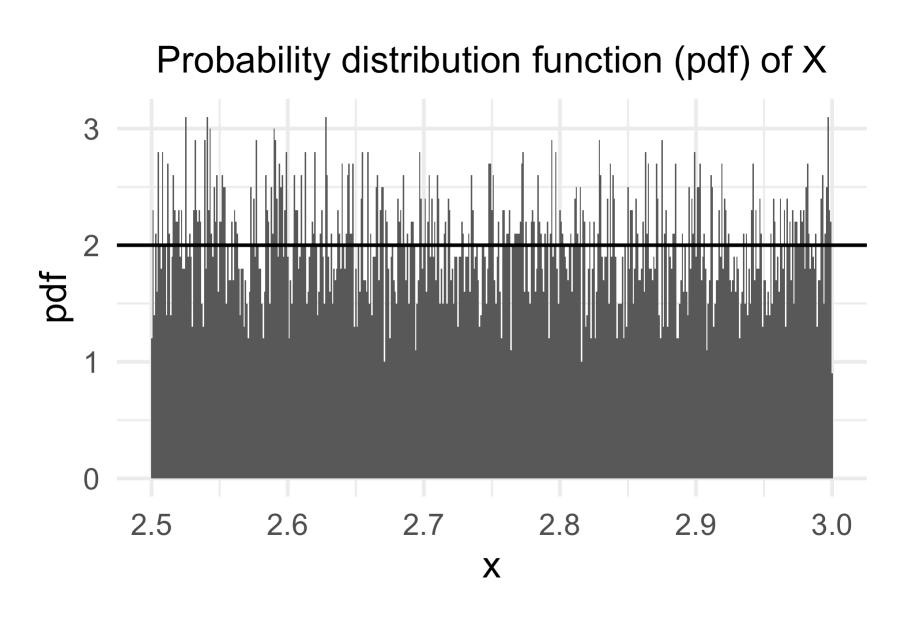
- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables.

3. Use R to simulate known continuous distributions.

Use R to simulate known distributions

- We can use R to simulate continuous random variables and visualize their distributions
- For example, we can simulate a *uniform* distribution between 2.5 and 3

```
uniform = tibble(
     x = runif(n=10000, min=2.5, max=3)
 3
   ggplot(uniform,
          aes(x = x,
 6
              y = after_stat(density))) +
     geom_histogram( binwidth = 0.001) +
     geom_abline(intercept = 2, slope = 0) +
     labs(
10
       title = "Probability distribution funct
11
       X = "X",
12
13
       y = "pdf"
14
```



Use R to simulate any continuous distribution

• We will discuss other ways to simulate continuous distributions once we cover cumulative distribution functions (CDFs) and inverse CDFs