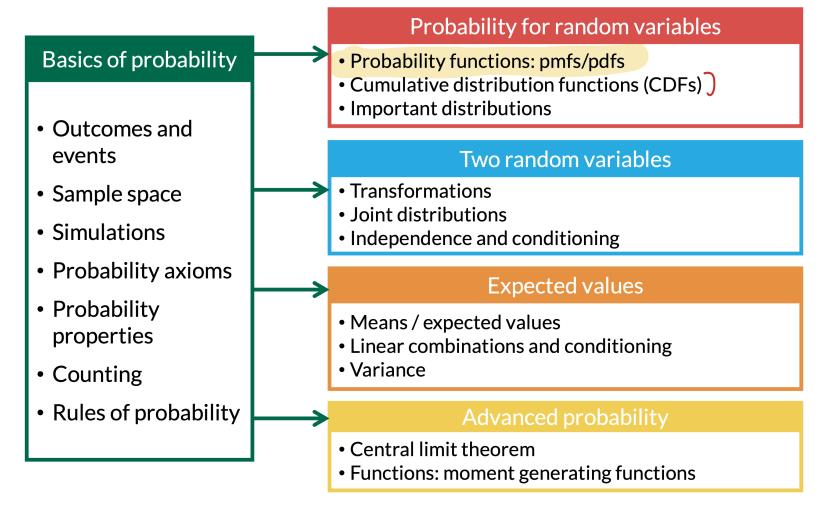
Lesson 8: Probability distribution functions (PDFs)

Meike Niederhausen and Nicky Wakim 2025-10-20

- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables. fn m pdf s
- 3. Use R to simulate known continuous distributions.

Where are we?



- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables.
- 3. Use R to simulate known continuous distributions.

Lesson 8 Slides

4

Discrete vs. Continuous RVs

- For a **discrete** RV, the set of possible values is either <u>finite</u> or can be put into a countably infinite list.
- **Continuous** RVs take on values from continuous *intervals*, or unions of continuous intervals

$$f_{X}(x) = P(X = x)$$

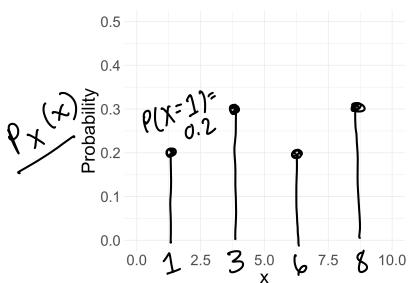
$$f_{X}(x) \neq P(X = x)$$

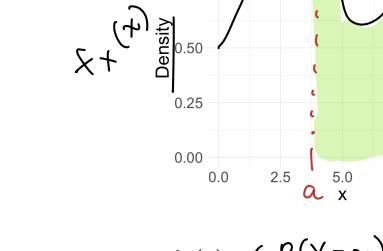
	Discrete	Continuous
probability	mass (probability mass	density (probability density
function	function PMF)	function, PDF)
F	$0 \le p_X(x) \le 1$	$0 \le f_X(x)$
1		(not necessarily ≤ 1)
	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
	$P(0 \le X \le 2)$	$P(0 \le X \le 2)$
	= P(X = 0) + P(X = 1) +	$=\int_0^2 f_X(x) dx$
	P(X=2)	
	if X is integer valued	
	$P(X \le 3) \ne P(X < 3)$	$P(X \le 3) = P(X < 3)$
	when $P(X=3) \neq 0$	since $P(X=3)=0$ always
cumulative	$F_X(a) = P(X \le a)$	$F_X(a) = P(X \le a)$
distribution	$= \sum_{x \le a} P(X = a)$	$= \int_{-\infty}^{a} f_X(x) dx$
function	graph of CDF is a	graph of CDF is
(CDF)	step function with jumps	nonnegative and
$F_X(x)$	of the same size as	continuous, rising
	the mass, from 0 to 1	up from 0 to 1
examples	counting: defects, hits,	lifetimes, waiting times,
	die values, coin heads/tails,	height, weight, length,
	people, card arrangements,	proportions, areas, volumes,
	trials until success, etc.	physical quantities, etc.
named	Bernoulli, Binomial,	Continuous Uniform,
distributions	Geometric, Negative	Exponential, Gamma,
	Binomial, Poisson,	Beta, Normal
	Hypergeometric,	
	Discrete Uniform	- ()
expected	$\mathbb{E}(X) = \sum_{x} x p_X(x)$	$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$
value	$\mathbb{E}(g(X)) = \sum_{x} g(x) p_X(x)$	$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
$\mathbb{E}(X^2)$	$\mathbb{E}(X^2) = \sum_x x^2 p_X(x)$	$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$
variance	Var(X) =	Var(X) =
	$\mathbb{E}(X^2) - (\mathbb{E}(X))^2$	$\mathbb{E}(X^2) - (\mathbb{E}(X))^2$
std. dev.	$\sigma_X = \sqrt{\operatorname{Var}(X)}$	$\sigma_X = \sqrt{\operatorname{Var}(X)}$

Figure from Introduction to Probability TB (pg. 301)

How to define probabilities for continuous RVs?

Discrete RV *X*:





Continuous RV X:

1.00

0.75

• pmf: $p_X(x) = P(X = x)$

• density:
$$f_X(x) \neq P(X = \chi)$$

• probability: $P(a) \leq X \leq b = \int_a^b f_X(x) dx$

integral b/w a &b, across fx(x

10.0

7.5

What is a probability density function?

Probability density function

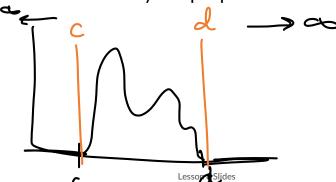
The probability distribution, or probability density function (pdf), of a continuous random variable X is a function $f_X(x)$, such that for all real values a, b with a < b,

$$\mathbb{P}(a \leq X \leq b) = \int_a^b f_X(x) dx$$

Remarks:

- 1. Note that $f_X(x) \neq \mathbb{P}(X=x)$!!!
- 2. In order for $f_X(x)$ to be a pdf, it needs to satisfy the properties

 - $f_X(x) \geq 0$ for all x• $\int_{-\infty}^{\infty} f_X(x) dx = 1$



1. Distinguish between discrete and continuous random variables.

2. Calculate probabilities for continuous random variables.

3. Use R to simulate known continuous distributions.

Let's demonstrate the PDF with an example (1/5)

Let $f_X(x) = 2$, for $a \le x \le 3$.

1. Find the value of a so that $f_X(x)$ is a pdf.

Valid

$$\int_{-\infty}^{\infty} f_{X}(x) = 1$$

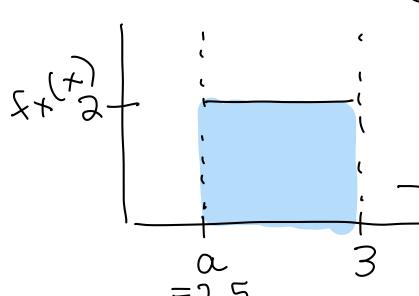
$$\int_{\alpha}^{3} \lambda = 1$$

$$\Rightarrow = 2\chi \Big|_{x=a}^{x=3} = 2(3) - 2(a)$$

$$= 6 - 2\alpha = 1$$

$$2\alpha = 5$$

 \Rightarrow geom: $h \cdot w = 1$ (Area of) 2(3-a) = 1



Let's demonstrate the PDF with an example (2/5)

ample 1.2
$$P(\lambda.7 \leq X \leq$$

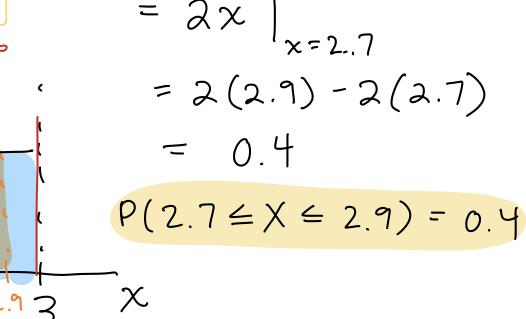
Let
$$f_X(x)=2$$
 , for $a\leq x\leq 3$.

2. Find
$$\mathbb{P}(2.7 \leq X \leq 2.9)$$
.

P($2.7 \le X \le 2.9$) = $\int_{2.9}^{2.9} 2 dx$ intergrands are w/in bounds

$$= 2x$$

$$= 2x \Big|_{x=2.7}^{x=2.9}$$



> by geom: area of orange/area of Line

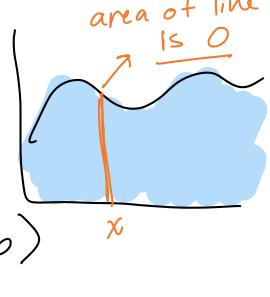
Let's demonstrate the PDF with an example (3/5)

Example 1.3

Let
$$f_X(x)=2$$
, for $a\leq x\leq 3$.

3. Find
$$\mathbb{P}(2.7 < X \le 2.9)$$
.

$$P(X = x) = 0$$



$$P(a \leq X \leq b) = P(a \leq X \leq b)$$

$$P(2.7 \le X \le 2.9) = P(2.7 \le X \le 2.9)$$

= 0.4

Let's demonstrate the PDF with an example (4/5)

Example 1.4

Let
$$f_X(x) = 2$$
, for $a \le x \le 3$.

4. Find
$$\mathbb{P}(X=2.9)$$
.

$$P(X = X) = 0$$

$$P(X = 2.9) = \int_{2.9}^{2.9} f_{X}(x) dx$$

$$= \int_{2.9}^{2.9} \frac{2}{2} dx$$

$$= \frac{2}{2} \frac{2}{2} \frac{2}{2} dx$$

$$= \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} dx$$

$$= \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} dx$$

$$= \frac{2}{2} \frac{2}{2}$$

Let's demonstrate the PDF with an example (5/5)

Let
$$\underline{f_X(x)} = 2$$
, for $a \leq x \leq 3$.
5. Find $\mathbb{P}(X \leq 2.8)$.

$$P(X \le 2.8) = \int_{2.5}^{2.8} 2 dx$$

$$= 2x \Big|_{x=2.5}^{x=2.8}$$

$$= 2(2.8 - 2.5)$$

$$= 0.6$$
is the basis cumulative

$$P(X \le x)$$
 is the basis ~ cumulative distribution function (CDF)

- 1. Distinguish between discrete and continuous random variables.
- 2. Calculate probabilities for continuous random variables.
 - 3. Use R to simulate known continuous distributions.

Use R to simulate known distributions

• We can use R to simulate continuous random variables and visualize their distributions

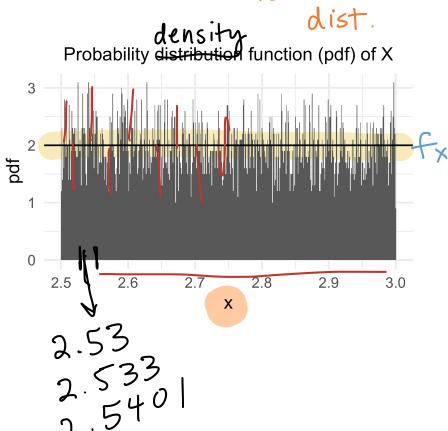
2.5 \(\chi \chi \)

 $f_{x}(x) = 2$

• For example, we can simulate a *uniform* distribution between 2.5 and 3

is a uniform

```
uniform = tibble(
     x = runif(n=10000, min=2.5, max=3)
   ggplot(uniform,
          aes(x = x)
              y = after stat(density))) +
     geom_histogram( binwidth = 0.001) +
     geom_abline(intercept = 2, slope = 0) +
10
     labs(
11
       title = "Probability distribution funct
       X = "X"
                             density
13
       v = "pdf"
14
```



Use R to simulate any continuous distribution

• We will discuss other ways to simulate continuous distributions once we cover cumulative distribution functions (CDFs) and inverse CDFs