Lesson 10: Transformations

Nicky Wakim

2025-10-27

Learning Objectives

- 1. Find the pdf of a linear rescaling of a random variable
- 2. Find the pdf of a nonlinear transformation of a random variable using the CDF method

Distributions of transformations of random variables

- Often make transformations of RVs
- A function of a random variable is a random variable
 - lacksquare If X is a random variable and g is a function then Y=g(X) is a random variable
 - Since g(X) is a random variable it has a distribution
- ullet Distribution of g(X) will have a different shape than the distribution of X
- Two types:
 - lacktriangle Linear rescalings: g(u) = a + bu
 - lacktrians Nonlinear transformations: e.g. $g(u)=u^2$, $g(u)=\log(u)$

Learning Objectives

- 1. Find the pdf of a linear rescaling of a random variable
- 2. Find the pdf of a nonlinear transformation of a random variable using the CDF method

Linear rescaling

Definition: Linear Rescaling

A linear rescaling is a transformation of the form g(u)=a+bu, where a and b are constants

- ullet Thus, if we have a random variable, X, then a linear rescaling of X could be M=g(X)=a+bX
- ullet For example, converting temperature from Celsius to Fahrenheit using g(u)=32+1.8u is a linear rescaling.

Example of linear rescaling (1/4)

Example 1: Linear rescaling of ${\cal U}$

Let U be a random variable with $f_U(u)=rac{4}{15}u^3$ for $1\leq u\leq 2$. Define V=1-U

- 1. What are the possible values of V?
- 2. Is V the same random variable as U?
- 3. Find $P(V \le -0.5)$.
- 4. Find the pdf of V.
- 5. Does V have the same distribution as U?

Example of linear rescaling (2/4)

Example 1: Linear rescaling of ${\cal U}$

Let U be a random variable with $f_U(u)=rac{4}{15}u^3$ for $1\leq u\leq 2$. Define V=1-U

- 1. What are the possible values of V?
- 2. Is V the same random variable as U?

Example of linear rescaling (3/4)

Example 1: Linear rescaling of ${\cal U}$

Let U be a random variable with $f_U(u)=rac{4}{15}u^3$ for $1\leq u\leq 2$. Define V=1-U

3. Find $P(V \le -0.5)$.

Example of linear rescaling (4/4)

Example 1: Linear rescaling of ${\cal U}$

Let U be a random variable with $f_U(u)=rac{4}{15}u^3$ for $1\leq u\leq 2$. Define V=1-U

- 4. Find the pdf of V.
- 5. Does V have the same distribution as U?

Summary of linear rescaling

- A linear rescaling of a random variable does not change the basic shape of its distribution, just the range of possible values.
 - It can flip it, widen it, condense it, and/or shift it
- Remember, do NOT confuse a random variable with its distribution
 - The random variable is the numerical quantity being measured
 - The distribution is the long run pattern of variation of many observed values of the random variable

Learning Objectives

- 1. Find the pdf of a linear rescaling of a random variable
 - 2. Find the pdf of a nonlinear transformation of a random variable using the CDF method

Nonlinear transformations

- What happens when we make a **nonlinear transformation**, like a logarithmic or square root transformation?
- Nonlinear transformations do not necessarily preserve the distribution shape
- Examples of nonlinear transformations:
 - $ullet g(u) = u^2$
 - $lacksquare g(u) = \sqrt{u}$
 - $g(u) = \log(u)$
 - $lacksquare g(u)=e^u$
 - $g(u) = \frac{1}{u}$

Finding the pdf of a transformation

- Let M be a transformation of X: M=g(X)
- ullet When we have a transformation of X,M, we need to follow the **CDF method** to find the pdf of M

We follow CDF method:

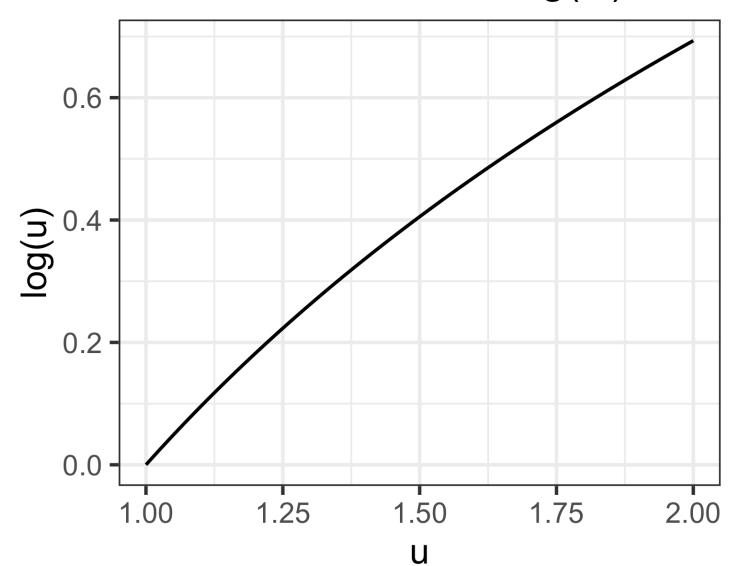
- 1. Start with the pdf for X
 - ullet aka $f_X(x)$
- 2. Translate the domain of X to M: find the possible values of M
- 3. Find the CDF of M
 - ullet aka $F_M(m) = P(M \leq m) = P(g(X) \leq m)$
 - ullet Will require manipulating $g(X) \leq m$ in terms of X (aka X alone on the left side)
- 4. Take the derivative of the CDF of M with respect to m to find the pdf of M
 - ullet aka $f_M(m)=rac{d}{dm}F_M(m)$

Example of nonlinear transformation (1/4)

Example 2: Nonlinear transformation of ${\cal U}$

Let U be a random variable with $f_U(u) = rac{4}{15} u^3$ for $1 \leq u \leq 2$. Define $V = \log(U)$

- 1. What are the possible values of V?
- 2. Find the CDF of V
- 3. Find the pdf of ${\it V}$


Example of nonlinear transformation (2/4)

Example 2: Nonlinear transformation of ${\cal U}$

Let U be a random variable with $f_U(u) = rac{4}{15} u^3$ for $1 \leq u \leq 2$. Define $V = \log(U)$

1. What are the possible values of V?

Transformation: V = log(U)

Example of nonlinear transformation (3/4)

Example 2: Nonlinear transformation of ${\cal U}$

Let
$$U$$
 be a random variable with $f_U(u) = rac{4}{15} u^3$ for $1 \leq u \leq 2$. Define $V = \log(U)$

2. Find the CDF of V

Example of nonlinear transformation (4/4)

Example 2: Nonlinear transformation of U

Let U be a random variable with $f_U(u) = rac{4}{15} u^3$ for $1 \leq u \leq 2$. Define $V = \log(U)$

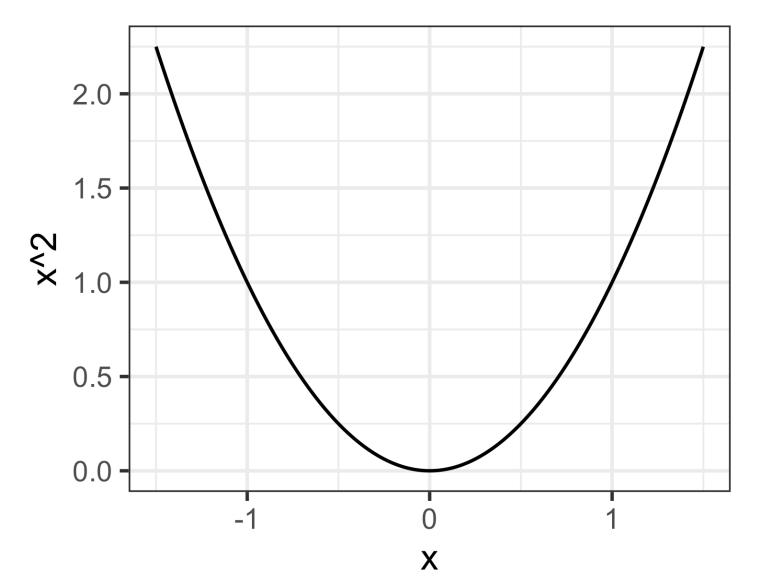
3. Find the pdf of ${\it V}$

Example of nonlinear transformation: domain (1/4)

Example 3: Nonlinear transformation of X

Let X be a random variable with $f_X(x)=rac{1}{2}$ for $-1\leq x\leq 1$. Define $Y=X^2$

- 1. What are the possible values of Y?
- 2. Find the CDF of Y
- 3. Find the pdf of Y


Example of nonlinear transformation: domain (2/4)

Example 3: Nonlinear transformation of X

Let X be a random variable with $f_X(x)=rac{1}{2}$ for $-1\leq x\leq 1$. Define $Y=X^2$

1. What are the possible values of Y?

Transformation: $Y = X^2$

Example of nonlinear transformation: domain (3/4)

Example 3: Nonlinear transformation of X

Let
$$X$$
 be a random variable with $f_X(x)=rac{1}{2}$ for $-1\leq x\leq 1$. Define $Y=X^2$

2. Find the CDF of Y

Example of nonlinear transformation: domain (4/4)

Example 3: Nonlinear transformation of X

Let
$$X$$
 be a random variable with $f_X(x)=rac{1}{2}$ for $-1\leq x\leq 1$. Define $Y=X^2$

3. Find the pdf of Y

Summary of nonlinear transformations

- Nonlinear transformations can change the shape of a distribution
- Always use the CDF method to find the pdf of a nonlinear transformation of a random variable
- Remember to carefully determine the possible values of the transformed random variable