Chapter 3: Independent Events

Meike Niederhausen and Nicky Wakim

2024-10-07

Learning objectives

- 1. Define independence of 2-3 events given probability notation
- 2. Calculate whether two or more events are independent

Where are we?

Basics of probability Probability for discrete random variables Functions: pmfs/CDFs Outcomes and events Important distributions Joint distributions Sample space Expected values and variance Probability axioms Probability Probability for continuous random variables properties Calculus Functions: pdfs/CDFs Counting Important distributions Independence Joint distributions Conditional Expected values and variance probability Advanced probability Bayes' Theorem Central limit theorem Random Variables Functions: moment generating functions

Independent Events

Definition: Independence

Events A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Notation: For shorthand, we sometimes write $A \perp B$, to denote that A and B are independent events.

Also note:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \implies A \perp \!\!\!\perp B$$

$$A \perp \!\!\!\perp B \implies \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

4

Example of two dice

Example :

Two dice (red and blue) are rolled. Let A = event a total of 7 appears, and B = event red die is a six. Are events A and B independent?

and B independent?
$$P(A \cap B) \doteq P(A)P(B)$$

BLUE DIE

1 2 3 4 5 6 -

$$P(A) = \frac{|A|}{|A|} = \frac{6}{6} = \frac{1}{6}$$

15 = 6 × 6 - 36

$$P(B) = \frac{|B|}{|S|} = \frac{6}{36} = \frac{1}{6}$$

$$P(A \cap B) = \underbrace{|A \cap B|}_{|S|} = \underbrace{\frac{1}{36}}_{|S|}$$

$$P(A)P(B) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$(A \cap B) = \frac{1}{36} = P(A)P(B) \Rightarrow A \perp B$$

5

Independence of 3 Events

Definition: Independence of 3 Events

Events A, B, and C are mutually independent if \rightarrow A \downarrow B, B \downarrow C, A \downarrow C 1. • $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$ A \downarrow B \downarrow C \downarrow B \downarrow C \downarrow A \downarrow B \downarrow C \downarrow A \downarrow B \downarrow C \downarrow B

•
$$\mathbb{P}(B \cap C) = \mathbb{P}(B) \cdot \mathbb{P}(C)$$

2.
$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C)$$

Remark:

On your homework you will show that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (1)$.

6

Probability at least one smoker

•
$$A_i$$
 = event person i is a smoker,
for $i = 1, ..., n$, and

• $p_i = \text{probability person } i \text{ is a}$ $\overline{\mathsf{smoker}}$, for $i = 1, \ldots, n$.

Find the probability that at least one person in the random sample is a smoker.

 $A_i \perp A_j \quad i \neq j \quad i = 1, 2, ..., n$ i = 1, 2, ..., n

P(A) + P(A) + P(A) = 1

 $|\hat{U}A| = (|\hat{D}A|^2)^2 - P(A|B) = P(A)P(B) = 1 - P(A^2)$

 $P(at | least one) = P(\bigcup_{i=1}^{r} A_i) \frac{P(B)+P(B')=1}{= |-P(B')|}$

$$= | - \prod_{i=1}^{r} P(A_i^c)$$
extension:

extension:
if
$$\underline{p_i} = \underline{p}$$

 $1 - \prod_{i=1}^{n} (1-p) = 1 - (1-p)^n$
 $n \to \infty$
 $0 \le p \le 1$
 $0 \le 1 - p \le 1$

P(at 1 smk) -> 1