Chapter 7: Discrete vs. Continuous Random Variables

Meike Niederhausen and Nicky Wakim

2024-10-14

Learning Objectives

- 1. Map the sample space to the set of real numbers using a discrete and continuous random variable
- 2. Distinguish between discrete and continuous random variables from a written description

Where are we?

Basics of probability

- Outcomes and events
- Sample space
- Probability axioms
- Probability properties
- Counting
- Independence
- Conditional probability
- Bayes' Theorem
- Random Variables

Probability for discrete random variables

- Functions: pmfs/CDFs
- Important distributions
- Joint distributions
- Expected values and variance

Probability for continuous random variables

- Calculus
- Functions: pdfs/CDFs
- Important distributions
- Joint distributions
- Expected values and variance

Advanced probability

- Central limit theorem
- Functions: moment generating functions

What is a random variable?

Definition: Random Variable

For a given sample space S, a **random variable** (r.v.) is a function whose domain is S and whose range is the set of real numbers \mathbb{R} . A random variable assigns a real number to each outcome in the sample space.

Let's demonstrate this definition with our coin toss

Suppose we toss 3 fair coins. Hor T

1. What is the sample space?

2. What are the probabilities for each of the elements in the sample space?

3. What are the probabilities that you get
$$0.1.2$$
, or 3 tails?

1. S = {HHH, HHT, HTT, HTH, TTT}

3. What are the probabilities that you get $0.1.2$, or 3 tails?

1. THH, THT, TTH, TTT

2. THH

3. P(X=0) = P(HHH)

4. THH

4. THH

5. THH

7. THH

8. P(X=1) = P(HHT) + P(HTH) + P(THH)

8. Same a^{10} to a^{10}

5

Let's stretch our definition of random variables

Example 2

What are some other random variables we could consider in Example 1?

$$P(Y=0) = \frac{2}{8} = \frac{1}{4}$$
 $P(Y=1) = \frac{6}{8} = \frac{3}{4}$

that we get
two in a row
of the same
heads/tails

yer or no

Some remarks on random variables

- A random variable's value is completely determined by the outcome ω where $\omega \in S$
 - What is $(random is the outcome \omega)$
- A random variable is a function from the sample space (with outcomes ω) to the set of real numbers
 - We typically write X instead of $X(\omega)$, where X is our random variable
- For example, if we roll three dice, there are $6^3 = 216$ possible outcomes (which is ω)
 - We can define a random variable as the sum of the of the three dice
 - If our outcome is the set of numbers the dice landed on $(\omega = (a, b, c))$, then

$$X(\omega) = X = a + b + c$$

Let's look at a continuous R.V.

Let X = how many hours youslept last night. (including decimals) $\sum (\omega) =$

- 1. What is the sample space S?
- 2. What is the range of possible values for X?
- 3. What is $X(\omega)$

$$\mathbb{X}(\omega)$$

$$=(1)u$$

$$X(\omega) \geq 0$$

$$X \geq 0$$

$$X(\omega) = \omega$$

outrome in Range

$$X(w) = \underbrace{\alpha + b + c}_{6 \text{ Chapter Props } 3} = + d + e + f + g$$

 $X \in [0, \infty)$

Discrete vs. Continuous r.v.'s

- For a discrete j.v., the set of possible values is either finite or can be put into a countably infinite list
 - You could theoretically list the specific possible outcomes that the variable can take
 - If you sum the rolls of three dice, you must get a whole number. For example, you can't get any number between 3 and 4.

- **Continuous** r.v.'s take on values from continuous intervals, or unions of continuous intervals
 - Variable takes on a range of values, but there are infinitely possible values within the range
 - If you keep track of the time you sleep, you can sleep for 8 hours or 7.9 hours or 7.99 hours or 7.999 hours ...

