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Learning Objectives

1. Calculate the mean (expected value) of discrete random variables



Where are we?

Basics of probability Probability for discrete random variables

 Functions: pmfs/CDFs

* Important distributions

» Sample space * Joint distributions

* Expected values and variance

* Outcomes and events >

* Probability axioms

* Probability Probability for continuous random variables
properties . Calculus
» Counting —3 ¢ Functions: pdfs/CDFs

 Important distributions

* Joint distributions

» Conditional » Expected values and variance
probability

* Independence

» Bayes' Theorem
— ¢ Central limit theorem

* Random Variables . . .
* Functions: moment generating functions




Our good and fair friend, the 6-sided die
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What is an expected value?

Definition: Expected value

The expected value o@m X that takesonvalues 1, 2, ..., %, is
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e Expected values are not necessarily an actual outcome
= |n previous example, we cannot roll a 3.5
= |t could be that our expected value is not in the sample space (E(X) & S)

¢ Definition holds when X takes on countably infinitely many values:
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Our good and not-so-fair friend, the 6-sided die P (%i)

E(X)= é%;f(x‘—‘%.)

Suppose the die is 6-sided, but
not fair. And the probabilities

of each side is distributed as: = | (O, | O) + ) ( O..OS—> + g(O_Ol}
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Expected value of a Bernoulli distribution

Suppose

1 with probability p (success)
X = : s :
0 with probability 1 —p (failure)

Find the expected value of X.

E(X) = 2 % P(X=%7) =
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Let’s slightly change our random variable

Suppose

¥ — 1 - with probability p
(-1 with probability 1 — p

—

Find the expected value of X

c(x)= E'X p(X=xi)= () (e)* (=N(1-p)
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Ghost!{z) Wt X =4 draws 42 g & WJIR
whot s Px('x;}

A ghost is trick-or-treating. It P(x = | ) = _,\_ _

comes to a house whergjt is 30

known that there ar 94 | 1

candies in the bagand only one P ( X = ;) = =1 . — = 50 —>=

is a watermelon Jolly Rancher, 30 2

which is the ghost’s favorite. _ — 27 (28/ I

The ghost takes pieces of ? ( K= 3> - 20 ol 9(8/ 30

candy without replacement /Qﬂ' it ind.
until it gets the watermelon /
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P(X‘—‘/H:?o for 4=1,2,3, ...,30
30 30 0
E(¥)= = X POX=xi)= 2% (35)
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