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Learning Objectives

1. Distinguish between Bernoulli, Binomial, Geometric, Hypergeometric, Discrete Uniform, Negative Binomial,
and Poisson distributions when reading a story.

2. ldentify the variable and the parameters in a story, and state what the variable and parameters mean.

3. Use the formulas for the pmf/CDF, expected value, and variance to answer questions and find probabilities.
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Where are we?

Basics of probability Probability for discrete random variables

 Functions: pmfs/CDFs

* Important distributions

» Sample space * Joint distributions

* Expected values and variance

* Outcomes and events >

* Probability axioms

* Probability Probability for continuous random variables
properties . Calculus
» Counting —3 ¢ Functions: pdfs/CDFs

 Important distributions

* Joint distributions

» Conditional » Expected values and variance
probability

* Independence

» Bayes' Theorem
— ¢ Central limit theorem

* Random Variables . . .
* Functions: moment generating functions
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Chapter 14: Bernoulli RVs



Properties of Bernoulli RVs oL coln  fogs

e Scenario: Qne trial, with outcome success or fajgre gl’ ]N‘Rl/ua th 0{{’, ]L'l nLc
* Shorthand: X ~ Bernoulh VV\'U'U’ ' ﬂL QA § as SwuCceéss
m’ [/ \l
¢ dishn b%H(L X !1 Wlth probability p P =0<
[ (0 with probability 1 —

px(z) = P(X =) = p*(1 — p) *forz =0,1

——

E(X) = ceney —

Var(X) = pg = p(1 — p) SPrWd \/N\

P(x=1)= 1(1' )" nber
)
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Bernoulli Example 1 _ L
it nll & 5 P=3

X = &
X i} A{ £ mll anythi
« We roll a fair 6-sided die. ‘ yTWrg

el 5
. Weget$1if@|nd -pD = =
nothing otherwise:. l P 6

¢ Let X be how much money we get. |

-FinMeofX. >< e BQ’VV\OMM(( :?
E(x)=p = ¢
_1L.$ -5
var (X) = pll-p) =7 = 20

“f%“
0
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Chapter 15: Binomial RVs



Properties of Binomial RVs

e Scenario: There are n independent trials, each resulting in a success or failure, with constant probabilit@ in
each trial. We are counting the number of successes (or failures). n= S C Oi N _F l 'P S

e Shorthand: X ~ Binomial(n,p) ) — P :—0 g m Lﬁd < (S \ACCQSQ>

X = Number of successes of n independent trials

px(z) =P(X =1z) = (n)px(l —p)" ¥ forz=0,1,2,...,n
x

n=10, - 0.5 — _
A Yhan B = ]

neo P’OS Var(X) = npq = np(1 — p)
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Our beloved fair-sided die

e Suppose we roll a fair 6-sided die
50 times.

e We get $1 every timeweroll a5,
and nothing otherwise.

e Let X be how much money we get

onthe50rolls.  how pa gs e

e Find the mean and variance of X. voll

Wt X = mo after SO wlls

A )

n=s0 p%¢

Yi = bernodd from ex 1

')
X= 2,
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Chapter 16: Geometric RVs



Geometric RVs

e Scenario: There are repeated independent trials, each resulting in a success or failure, with constant
probability of success for each trial. We are counting the number of trials until the first success.

e Shorthand: X ~ Geo(p) or X ~ Geometric(p) or X ~ G(p)

X = Number of trials needed for first success X = Number of failures before first success (count x
(count z includes the success) does not include the success)
px(z) = P(X = z) = (1 - p&p px(z) = P(X = z) = (1 p)'
~S—"
forc =1,2,3,... fore =0,1,2,...
—s Fx(@)=PX<z)=1-(1-p)° Fx(z)=P(X <z)=1—(1—p)*™!
forc =1,2,3,... A f =0,1,2,...
ne E(x);('/f;\,i or x 1y 4,
1 s 1—p
E(X) = — c,,.c. ,¢,, C E(X)=——
1p_ HI Hz Hz Hy Hs 1p_
Var(X) = —, vy v T Var(X) = ——
p -p P P
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Bullseye (1/4)

We throw darts at a dartboard until we hit the bullseye. Assume throws are independent and the probability of
hitting the bullseye is 0.01 for each throw.

1. What is the pmf for the number of throws needed to hit the bullseye?

2. What are the mean and variance for the number of throws needed to hit the bullseye?
3. Find the probability that our first bullseye:

e isonone of the first fifty tries

e is after the 50" try, given that it did not happen on the first 20 tries
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Bullseye (2/4) X= % tnals w/ L success

————
We throw darts at a dartboard until S—QVV,EZ-{- ¢ H

we hit the bullseye. Assume throws € M H
are independent and the probability M

M H
of hitting the bullseye is 0.01 for .
each throw.

1. What is the pmf for the number of
throws needed to hit the bullseye?

P(¥=%x)= ("PYQ-I(P)

P(x=x) = (041) " (001
for x=1,8,3,....

X~ Geo (P=0.0})
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Bullseye (3/4)

We throw darts at a dartboard until
we hit the bullseye. Assume throws
are independent and the probability
of hitting the bullseye is 0.01 for
each throw.

2.What are the mean and variance
for the number of throws needed
to hit the bullseye?

Sk('o Gr
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Bullseye (4/4) P(X < 50) = F’z\: (?C=§‘O>

%@ = |- —000)"

We throw darts at a dartboard until

we hit the bullseye. Assume throws — — D ~ S—
are independent and the probability ( O . 0’ Cl 6 3 ﬂ

of hitting the bullseye is 0.01 for m N\
each throw. F( X >S7) | X S 9\0> = PA&(L/

. HH N——~ — —
3. Find the probability that our first L ot F ( X > Py 0>

bullseye:

c in (S
» is on one of the first fifty tries SWee

e is after the 50" try, given that i 20 _ S0
(; difjfr:ottw:pggn ;nﬁfeﬁrsigcfi = P( X > g_b> l P (X - )
= P(x>20) (= P(x£25)

_/M+ 099%) _ 00161""”_077

(0 b2 0a0%) 0

p(x>30)= 0.97%
- P(%&30)= |-




Memoryless property for Geometric RVs
If we know X is greater than some number (aka given X > j), then the probability of X > k + jisjust the
probability that X > k. Py (o)
20
P(X>k+jX>j)=PX>k)
P(X>k+jand X >j) PX>k+j) (1-—p)*t

P(X >k+jX>j) = PX > ) = TPXS)  d_py =(1-p)*
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Chapter 17: Negative Binomial RVs



Properties of Negative Binomial RVs

e Scenario: There are repeated independent trials, each resulting in a success or failure, with constant
probability of success for each trial. We are counting the number of trials until th€ r!/)success.

e Shorthand: X ~ NegBin(p,r)or X ~ NB(p, )

e Negative binomial is sum of 7 geometric distributions

X = Number of independent trials until 7" success

r—1

prle) = POX =)= (7]

)(1—p)‘”Tp’"fora::r,r+1,r+2,...
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Hitting more than 1 bullseye

Consider again the bullseye example,
where we throw darts at a dartboard
until we hit the bullseye. Assume
throws are independent and the
probability of hitting the bullseye is
0.01 for each throw.

1. What is the expected value and
variance of the number of throws
needed to hit 5 bullseyes?
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Hitting more than 1 bullseye
r=5> p=o0.0l

Consider again the bullseye example, X = JE\: B4 O\L ( ‘H’\VD W3S > -‘_D %/j:

where we throw darts at a dartboard 5 b‘ Q ‘Z (/y es

until we hit the bullseye. Assume
throws are independent and the

prohability of hitting the bullseye is X N NZ? Bl'}’\ ( r=S , p =0.0 l>
0.01 for each throw.
<

. - _ — Y
2 \What is the probability that the = 0 = 20 — | a0
5t bullseye is on the 20" throw? P ( X 2 > ( - 0.99 0. 0’
N
+ w&%s +» Anrun Hr
lst 17 Fhwws (A f‘/mis:)

= 0.00000033

e ———
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5 minute break



Chapter 18: Poisson RVs



Properties of Poisson RVs

e Scenario: We are counting the number of successes in a fixed time period, which has a constant rate of

successes 7£7')Ce d g/yauﬁakz

e Shorthand: X ~ Poisson(A) or X ~ Pois(]A)

> = V'M{' X = Number of successes in a given period
e A\
px(z) = P(X =1z) = ' forx =0,1,2,3,...
— x!
E(X)= A\

LD Sams bl constunt ritn?
will answer In

exp vad § vane
[15S6h .

Var(X) =
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Distinguishing between Binomial and Poisson RVs

e Recall thatif X ~ Binomial(n, p), then
= X models the number of successes...
= inn independent (Bernoulli) trials....
= that each have the same probability of success p.
e Poissonrv’s are similar,
= except that instead of having n discrete independent trials,

= there is a fixed time period (or space) during which the successes happen
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Examples of Poisson RVs

o Number of visitors to an emergency room in an hour during a weekend night — 7\‘ .

e Number of study participants enrolled in a study per week

e Number of pedestrians walking through a square mile

e Any more?
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Emergency Room Visitors ~ = S0 Y(si7s/doy X~ Pois (2=50)

X = Vl'S:'TY)V_s/ /
h 50°°
Suppose an emergency room has an @ P( X = 80) = —

average of 50 visitors per dapFind 20 |
the following probabilities. ‘ 59
1. Probability of 30 visitors in a day. - 0 000 é

. Probability of at least 8 visitors in
norm
an hour.

@Lﬁ

~Q_X) % Y= brhom

wﬁﬁ@ﬂﬁgg&\_ﬁﬁx)/,iii/"
N g visitors [hr 082y oo

< N\ = SO0VIS | dow, _ Px=8)

LT Iy 3 hows v ﬁ'lﬁ
OUVs V(s = 0.00l0
AP

—?>§{ Probability of 8 visitors in an hour. P()(f 30)’-‘( X< 30 y “\(XW\ bcea = 570
- - -




Vv

Combining independent Poisson distributions

If X ~ Poi ()\1) andY ~ Pois Az))are independent of each other, then Z &= X + Y ~ Pois(A1 + A2).
—— = — —_—
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Two emergency rooms

Suppose emergency room 1 has an
average of 50 visitors per day, and
emergency room 2 has an average of
70 visitors per day, independently of
each other. What is the probability
distribution to model of the total
number of visitors to both?
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Poisson Approximation of the Binomial

Both Poisson and Binomial rv.s are counting the number of successes

e |f for a Binomialrv.

= the number o@s n is very largey)and
= the probability of succesé) isclosetoOor 1,

e Then the Poisson distribution can be used to approximate Binomial probabilities

= and weuse A = np
[y

1
¢ Rule of thumb: We can use the Poisson approximation when — < np(1 — <10
u | pproximation when - < ,P(_/QL—
/
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Medical lab errors

To do for extra practice - will also see a similar problem in BSTA
511

Suppose that in the long run, errors
in a medical testing lab are made
0.1% of the time. Find the probability
that fewer than 4 mistakes are made
in the next 2,000 tests.

1. Find the probability using the
Binomial distribution.

2. Approximate the probability in
part (1) using the Poisson
distribution.
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Chapter 19: Hypergeometric RVs



Hypergeometric RVs

e Scenario: There are a fixed number of successes and failures (which are known in advance), from which we
make 1 draws without replacement. We are counting the number of successes from the n trials.

= Thereis a finite population of NV items

= Eachitem in the population is either a success or a failure, and there are M successes total.

= We randomly select (sample) n items from the population without replacement
e Shorthand: X ~ Hypergeo(M, N,n)

X = Number of successes in n draws ﬂ
() (v Y

for z integer-valued max(0,n — (N — M)) < z < min(n, M)
-

_> bpx(@)=PX==2)=

A ¢ 30 49((/_( N: test X )f 13

M 2 def X g fested
3 dufechr—
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Wolf population f“ﬂ?‘d - success — W X ?: S frials
249  wolwves : N = a4 g

|l %749901-‘

A wildlife biologist is using mark-

recapture to research a wolf S S amﬂw@ : n=5
population. Suppose a specific study ( _ _
regionm 24 wolves, F X @> — P [ X - 3)
of whi ve alreatly been

<fagged It 5 wolves are randomly P(X’ %) = M)(yl\,,/ ?/1:) (zl) AT 7

aptured, what is the probability that

/"-—\
@i!@; ave already been tagged?
= (D) ()
P(X':3>= “ 9\"1"”
5 -3/

( )

Chapter 14-20 Slides



= o isTic reqression

Binomial appfoximation of the hypergeometric RV

rSuppose a hypergeometric RV X has the following properties:

e the population size N is really big,

* the number of successes M in the population is relatively large,

._%»shoulcln'tbecloseto.o.&1 T prop of success shodd % not be

 and the number of items n selected is small close ’l—D O o L

n€
* Rule of thumb: — < 0.05 or N; 200 H# Haals much
—_— swaller than the pop.

Then, in this case, making n draws from the population doesn’t change the probability of success much, and the
hypergeometric RV. can be approximated by a binomial RV \\/
M ko

P':/—:

N ug%l'«/\-?mL

Binow

Chapter 14-20 Slides

40



1100 Successes = M-
240D Popmlaﬁmf N -

| @O n=50 Wt X4 tngged wolves in ¢?
Suppose a specific study
region is known to have ~J Y ?,(,r = = O =SS0
( 2400@0Ives,ofwhic X HYP{ (N ;LIOO M=lo , )

have already been tagged: P (X_ =20 > — —w
@f 50 wolves are randomly ( ( [ 0 . 0 g 1% 9\

captured, what jgthe 2200
probability “@ bf g@

them have already been

tagged? 11y per geom. @) cheek N L 209 quoo ’/&0( $3) = (000

Wolf population revisited

2ApprOX|matethe _&, nooe_ _

probability in part (1) N m T 09 \/

using the binomial

distribution. = 4 "f%ﬂ?i of SO

Py =20).m(50)(E) (:;%)%:o_ozm



Chapter 20: Discrete Uniform RVs



Discrete Uniform RVs

e Scenario: There are IV possible outcomes, which are all equally likely.
e Shorthand: X ~ Uniform(N)

X = Outcome of interest, withz =1, 2,...

1

px(z) =P(X=2)= —forx =1,2,3,...

N
 N+1
2
N2 -1
12

E(X)

Var(X) =
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What discrete uniform RVs have we seen already?
0, @o“im? fair die N=§
Examples of discrete uniform RVs ®) Tossi ng  rin N=2
O, f?waz'm? card o oleck
N=25

@ Pu,%'n% V From deck
N=Y% suitfr
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