Chapter 22: Introduction to Counting

Meike Niederhausen and Nicky Wakim

2024-10-02

Learning Objectives

- 1. Define permutations and combinations
- 2. Characterize difference between sampling with and without replacement
- 3. Characterize difference between sampling when order matters and when order does not matter
- 4. Calculate the probability of sampling any combination of the following: with or without replacement and order does or does not matter

Where are we?

Basics of probability Probability for discrete random variables Functions: pmfs/CDFs Outcomes and events Important distributions Joint distributions Sample space Expected values and variance Probability axioms Probability Probability for continuous random variables properties Calculus Functions: pdfs/CDFs Counting Important distributions Independence Joint distributions Conditional Expected values and variance probability Advanced probability Bayes' Theorem Central limit theorem Random Variables Functions: moment generating functions

Basic Counting Examples

Basic Counting Examples (1/3)

Example 1

Suppose we have 10 (distinguishable) subjects for study.

- 1. How many possible ways are there to order them?
- 2. How many ways to order them if we can reuse the same subject and
 - need 10 total?
 - need 6 total?
- 3. How many ways to order them without replacement and only need 6?
- 4. How many ways to choose 6 subjects without replacement if the order doesn't matter?

Basic Counting Examples (2/3)

Suppose we have 10 distinguishable) subjects for study.

Example 1.1

How many possible ways are there to order them?

Or her placing

or her matters

Example 1.2

How many ways to order them if we can reuse the same subject and

replacement

- need 10 total?
- need 6 total?

Basic Counting Examples (3/3)

Suppose we have 10 (distinguishable) subjects for study.

How many ways to order them without replacement any only need 6?

How many ways to choose 6 subjects without replacement if the order doesn't matter?

3 subj.

picking 2

10!

times 21 duplicated

0 x 9 x 8 x 7 x 6 x 5 10.9.8.7.6.5.4.3.2.1

4.3.2.1

9.8.7.6.5=

many ways to order 6 sub

Permutations and Combinations

Permutations and Combinations

Definition: Permutations

w/out replacement

ex 1.3

0!= 1

Permutations are the number of ways to arrange in order r distinct objects when there are n total.

$$nPr = \frac{n!}{(n-r)!}$$

10

ex 1.1: n=10, r=10

Definition: Combinations

Combinations are the number of ways to choose (order doesn't matter) r objects from n without replacement.

$$nCr = {}^{6}$$
n choose $r" = {n \choose r} = \frac{n!}{r!(n-r)!}$

Some combinations properties

Property Proof $\begin{array}{c} \text{N Choose R} \\ \binom{n}{r} = \binom{n}{n-r} \end{array} \qquad \frac{\binom{n}{r}}{r!} = \frac{n!}{r!(n-r)!} \text{ and } \binom{n}{n-r} = \frac{n!}{\underbrace{(n-r)!(n-(n-r))!}} = \frac{n!}{\underbrace{(n-r)!r!}}$ $\binom{n}{1} = \frac{n!}{1!(n-1)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdots 1}{1! \cdot (n-1) \cdot (n-2) \cdots 1} = \frac{n \cdot (n-1)!}{1 \cdot (n-1)!}$ $\binom{n}{0} = \frac{n!}{0!(n-0)!} = \frac{n!}{1 \cdot n!} = 1$

More Examples: order matters vs. not

Table of different cases

See table on pg. 277 of textbook

n = total number of objects

 $r \neq$ number objects needed

with replacement

without replacement

order matters

$$n \Pr = rac{n!}{(n-r)!}$$
 perm's

$$\binom{n+r-1}{r}$$

$$egin{pmatrix} n+r-1 \ r \end{pmatrix} \qquad n\mathrm{C} r = egin{pmatrix} n \ r \end{pmatrix} = rac{n!}{r!(n-r)!}$$

Enumerating Events and Sample Space

- Recall, P(A) = (|A|)
 - Within combinatorics, we can use the previous equations to help enumerate the event and sample space
 - ullet But A might be a combination of enumerations

- For example in the following example drawing 2 spades when order does not matter, we actually need to enumerate the other cards that are NOT spades. So the event is choosing 2 spades out of 13 AND choosing 0 other cards of 39 cards (13 hearts + 13 clubs + 13 diamonds).
- Thus the probability is actually:

$$P(\text{two spades}) = \frac{131/39}{22/102}$$

• Note that 13+39=52 and 2+0=2. So the numerator's n's add up to the denominator's n and the numerator's n's add up to the denominator's n's

More examples: order matters vs. not (1/2)

Example 2

Suppose we draw 2 cards from a standard deck without replacement. What is the probability that both are spades when

- 1. order matters?
- 2. order doesn't matter?

$$P(A) = \frac{|A|}{|S|} = \frac{13 \cdot 12}{52 \cdot 51} = \left(\frac{13}{52}\right) \cdot \left(\frac{12}{51}\right)$$