Chapter 27: Conditional Distributions

Meike Niederhausen and Nicky Wakim

2024-11-25

Learning Objectives

1. Calculate the conditional probability density from a joint pdf

Conditional probabilities we've seen before

What do we know about conditional probabilities for events and discrete RVs?

For events:

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

For discrete RVs:

$$p_{X|Y}(x|y) = P(X=x|Y=y) = rac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

What does it mean for conditional densities of continuous RVs?

For continuous RVs:

Example starting from a joint pdf: first try!

Example 1.1

Let
$$f_{X,Y}(x,y) = 5e^{-x-3y}$$
, for $0 < y < rac{x}{2}$.

1. Find

$$\mathbb{P}(2 < X < 10|Y=4)$$

What is a conditional density?

Definition: Conditional density

The conditional density of a r.v. X given Y=y, is

$$f_{X|Y}(x|y) = rac{f_{X,Y}(x,y)}{f_Y(y)},$$

for $f_Y(y) > 0$

Remarks

1. It follows from the definition for the conditional density $f_{X|Y}(x|y)$, that

$$f_{X,Y}(x,y)=f_{X\mid Y}(x\mid y)f_{Y}(y).$$

- 2. For a fixed value of Y=y, the conditional density $f_{X|Y}(x|y)$ is an actual pdf, meaning
 - $ullet f_{X|Y}(x|y) \geq 0$ for all x and y, and

$$ullet \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = 1.$$

Example starting from a joint pdf: second try! (1/2)

Example 1.1

Let
$$f_{X,Y}(x,y) = 5e^{-x-3y}$$
, for $0 < y < rac{x}{2}$.

1. Find

$$\mathbb{P}(2 < X < 10|Y=4)$$

Example starting from a joint pdf: second try! (2/2)

Example starting from a joint pdf

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 1.2

Let
$$f_{X,Y}(x,y) = 5e^{-x-3y}$$
, for $0 < y < rac{x}{2}$.

2. Find
$$\mathbb{P}(X>20|Y=5)$$

Finding probability with conditional domain and pdf

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 2

Randomly choose a point X from the interval [0,1], and given X=x, randomly choose a point Y from [0,x]. Find $\mathbb{P}(0< Y<\frac{1}{4})$.

Independence and conditional distributions

Question What is $f_{X|Y}(x|y)$ if X and Y are independent?

$$f_{X|Y}(x|y) = rac{f_{X,Y}(x,y)}{f_y(y)} = rac{f_X(x)f_y(y)}{f_y(y)} = f_X(x)$$

ullet If $f_{X|Y}(x|y)$ does not depend on y (including the bounds/domain), then X and Y are independent.