Lesson 4: Conditional Probability

TB sections 2.2

Meike Niederhausen and Nicky Wakim 2024-10-09

Learning Objectives

- 1. Recognize joint, marginal, and conditional probabilities in contingency and probability tables
- 2. Mathematically define probability properties that relate to conditional probability (general multiplication rule, independence and conditional probability, and Bayes' theorem)
- 3. Apply probability properties to solve a world problem on positive predictive value (PPV)

Where are we?

Learning Objectives

- 1. Recognize joint, marginal, and conditional probabilities in contingency and probability tables
- 2. Mathematically define probability properties that relate to conditional probability (general multiplication rule, independence and conditional probability, and Bayes' theorem)
- 3. Apply probability properties to solve a world problem on positive predictive value (PPV)

Example: hypertension prevalence (1/2)

• US CDC estimated that between 2011 and 2014¹, 29% of the population in America had hypertension

- A health care practitioner seeing a new patient would expect a 29% chance that the patient might have hypertension
 - However, this is only the case if nothing else is known about the patient

Example: hypertension prevalence (2/2)

- Prevalence of hypertension varies significantly with age
 - Among adults aged 18-39, 7.3% have hypertension
 - Adults aged 40-59, 32.2%
 - Adults aged 60 or older, 64.9% have hypertension

- Knowing the age of a patient provides important information about the likelihood of hypertension
 - Age and hypertension status are not independent (we will get into this)
- While the probability of hypertension of a randomly chosen adult is 0.29...
 - The **conditional probability** of hypertension in a person known to be 60 or older is 0.649

How can we assemble the full picture of hypertension and age with probabilities?

Contingency tables

- We can start looking at the **contingency table** for hypertension for different age groups
 - Contingency table: type of data table that displays the frequency distribution of two or more categorical variables

Table: Contingency table showing hypertension status and age group, in thousands.

	Age Group	Hypertension	No Hypertension	Total
	18-39 years	8836	112206	121042
ĺ	40 to 59 years	42109	88663	130772
	Greater than 60 years	39917	21589	61506
	Total	90862	222458	313320

Types of probabilities from contingency tables

Table: Contingency table showing hypertension status and Joint probability intersection (and)

age group, in thousands.		T a
Uvnortoncion	No	Total

	Age Group	Hypertension	No Hypertension	Total
•	18-39 years	8836	112206	121042
	40 to 59 years	42109	88663	130772
=	Greater than 60 years	39917	21589	61506
	Total	90862	222458	313320

hypur.

In first row, shows that in the entire population of 313,320,000, approximately 8,836,000 people were aged 18-39 year and had hypertension (~2.8%)

Marginal probability

We can say that in the entire population of 313,320,000. approximately 121,042,000 people are 18-39 years (~38.6%)

Conditional probability

But we can also say the first row shows that of 121,042,000 people who are 18-39 years, 8,836,000 people had hypertension (~7.3%)

Poll Everywhere Question 1

Probability tables

We typically display joint and marginal probabilities in probability table

Table: Probability table summarizing hypertension status and age group.

Age Group	Hypertension	No Hypertension	Total
18-39 years	0.0282	0.3581	0.3863
40 to 59 years	Q.1344	0.2830	0.4174
Greater than 60 years	0.1274	0.0689	0.1963
Total	0.2900	0.7100	1.0000

- Joint probability: intersection of row and column
- Marginal probability: row or column total

Let's go back to conditional probability

- So far we have intuitively thought of conditional probability and used the **contingency table**:
 - The first row shows that of 121,042,000 people who are 18-39 years, 8,836,000 people had hypertension (~7.3%)
- We got this from:

$$P(\text{hypertension}|18\text{-}39 \text{ years old}) = \frac{8,836,000}{121,042,000} = 0.073$$

• "hypertension 18-39 years old" reads as "hypertension given 18-39 years old"

Can we calculate the conditional probability from the **probability table**?

Learning Objectives

- 1. Recognize joint, marginal, and conditional probabilities in contingency and probability tables
 - 2. Mathematically define probability properties that relate to conditional probability (general multiplication rule, independence and conditional probability, and Bayes' theorem)
- 3. Apply probability properties to solve a world problem on positive predictive value (PPV)

We can define conditional probability more mathematically

- Let's define some events:

 - A = hypertension B = 18-39 years old

$$P(\text{hypertension}|18\text{-}39 \text{ years old}) = P(\underline{A}|\underline{B}) = \frac{P(A\cap B)}{P(B)} >$$

Conditional probability

The conditional probability of an event A given an event or condition B is:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

So if we had a table of probabilities for our example...

Table: Probability table summarizing hypertension status and age group.

Age Group	Hypertension N	No Hypertension	Total
18-39 years	0.0282	0.3581	0.3863
40 to 59 years	0.1344	0.2830	0.4174
Greater than 60 years	0.1274	0.0689	0.1963
Total	0.2900	0.7100	1.0000

Recall

- A = hypertension
- B = 18-39 years old

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

What is the probability of hypertension for someone aged 18-39 years old?

$$P(A|B) = ?$$
 $P(A|B) = P(AAB)$ joint $P(B)$ marginal

$$=\frac{0.0282}{0.3863}$$

General multiplication rule

General multiplication rule

If A and B represent two outcomes or events, then

$$P(A \cap B) = P(A|B)P(B)$$

This follows from rearranging the definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow P(A|B)P(B) = P(A \cap B)$$

Independence and conditional probability

• If two events, say A and B, are **independent**, then:

$$P(A \cap B) = P(A)P(B)$$

- $P(A\cap B)=P(A)P(B)$ We can extend this to conditional probability: $P(A|B)=\frac{P(A\cap B)}{P(B)}$
 - For two independent events, say A and B,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Conditional probability of independent events

If events A and B are independent, then

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$

Poll Everywhere Question 2

 $P(A \cap B) = P(A)P(B)$ not independent

Bayes' Theorem (Section 2.2.5)

Bayes' Theorem

In its simplest form:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

This also translates to:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|A^c) \cdot P(A^c)}$$

because of the Law of Total Probability:

$$P(B) = P(B \cap A) + P(B \cap A^{C})$$

= $P(B|A)P(A) + P(B|A^{C})P(A^{C})$

Learning Objectives

- 1. Recognize joint, marginal, and conditional probabilities in contingency and probability tables
- 2. Mathematically define probability properties that relate to conditional probability (general multiplication rule, independence and conditional probability, and Bayes' theorem)
 - 3. Apply probability properties to solve a world problem on positive predictive value (PPV)

Example: How accurate is rapid testing for COVID-19? (1/n)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Suppose you take the iHealth® rapid test.

- 1. What is the probability of a positive test result?
- 2. What is the probability of having COVID-19 if you get a positive test result?
- 3. What is the probability of not having COVID-19 if you get a negative test result?

From the iHealth® website https://ihealthlabs.com/pages/ihealth-covid-19-antigen-rapid-test-details:

Some specialized terminology in diagnostic tests

Calculating probabilities for diagnostic tests is done so often in medicine that the topic has some specialized terminology $\rightarrow P(T^+ | D)$

- The sensitivity of a test is the probability of a positive test result when disease is present, such as a positive mammogram when a patient has breast cancer.
- The **specificity** of a test is the probability of a negative test result when disease is absent
- P(T- | Dc)

- The probability of disease in a population is referred to as the **prevalence**.
- With specificity and sensitivity information for a particular test, along with disease prevalence, the **positive**predictive value (PPV) can be calculated: the probability that disease is present when a test result is positive.
- Similarly, the negative predictive value is the probability that disease is absent when test results are negative

Poll Everywhere Question 3

General steps for probability word problems

- 1. Define the events in the problem and draw a Venn Diagram
- 2. Translate the words and numbers into probability statements
- 3. Translate the question into a probability statement
- 4. Think about the various definitions and rules of probabilities. Is there a way to define our question's probability statement (in step 3) using the probability statements with assigned values (in step 2)?
- 5. Plug in the given numbers to calculate the answer!

Let's apply the steps to our example (1/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 1: Let's define our events of interest

 \hat{D} = event one has disease (COVID-19)

- D^c = event one does not have disease
- T^+ = event one tests positive for disease
- T^- = event one tests negative for disease

Let's apply the steps to our example (2/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 2: Translate given information into mathematical notation

- Test correctly gives a positive result 94.3% of the time: P(T+|D) = 0.943 Sensitivity
- Test correctly gives a negative result 98.1% of the time: $P(T-|D^c) = 0.981$ specificity
- true prop w disease 83.8 people per 100k in Multnomah County with Covid-19: $P(D) = \frac{83.8}{100000} = 0.000838$

Let's apply the steps to our example (3/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 3: Translate the question into a probability statement

- 1. What is the probability of a positive test result? $P(T^+) = ?$
- 2. What is the probability of having COVID-19 if you get a positive test result? $P(D|T^+) = ?$
- 3. What is the probability of not having COVID-19 if you get a negative test result?

$$P(D^{c}|T^{-})=?$$

Let's apply the steps to our example (4/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 4: Define our question's probability statement using the probability statements with assigned values

$$1.P(T^{+}) = P(T^{+} \cap D) + P(T^{+} \cap D^{c})$$

$$= P(T^{+} \mid D) P(D) + P(T^{+} \mid D^{c}) P(D^{c})$$

$$= (0.943) (0.000838) + P(T^{+} \mid D^{c}) (1 - 0.000838)$$

$$P(T^{+} \mid D^{c}) + P(T^{-} \mid D^{c}) = P(D^{c})$$

$$P(T^{+} \cap D^{c}) + P(T^{-} \cap D^{c}) = P(D^{c})$$

$$P(T^{+} \cap D^{c}) + P(T^{-} \cap D^{c}) = P(D^{c})$$

$$P(D^{c}) + P(D^{c}) = P(D^{c})$$

$$P(D^{c}) + P(D^{c}) = P(D^{c})$$

31

$$P(T^{+}) = (0.943) (0.000838) + P(T^{+}|D^{c}) (1-0.000838)$$

$$= [-P(T^{-}|D^{c})]$$

$$= (0.943) (0.000838) + (1-0.981) (1-0.000838)$$

$$= 0.01977$$
The probability of a positive test is 0.01977

Let's apply the steps to our example (5/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 4: Define our question's probability statement using the probability statements with assigned values

2.
$$P(D|T^+) =$$

Let's apply the steps to our example (6/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 4: Define our question's probability statement using the probability statements with assigned values

$$3. P(D^{\rm c}|T^-) =$$

Let's apply the steps to our example (7/7)

How accurate is rapid testing for COVID-19?

"Based on the results of a clinical study where the iHealth® COVID-19 Antigen Rapid Test was compared to an FDA authorized molecular SARS-CoV-2 test, iHealth® COVID-19 Antigen Rapid Test correctly identified 94.3% of positive specimens and 98.1% of negative specimens." In October 2022, 83.8 people per 100k in Multnomah County with Covid-19.

Step 5: Calculate answer