Lesson 8: Data visualization of two variables

Nicky Wakim

2024-10-23

Learning Objectives

- 1. Visualize relationships between two numeric variables using scatterplots and determine their correlation
- 2. Visualize relationships between two categorical variables using contingency tables and segmented barplots
- 3. Visualize relationships between a categorical variable and a numeric variable using side-by-side boxplots, density plots, and ridgeline plots

Where are we?

Relationships between two variables

• Many studies are motivated by a researcher examining how two or more variables are related

- Example questions about relationships:
 - Do the values of one variable increase as the values of another decrease?
 - Do the values of one variable tend to differ by the levels of another variable?

categorial

• Today we are introducing **summarization and data visualization methods** for exploring and summarizing **relationships between two variables**

- Approaches vary depending on whether the two variables are:
 - Both numerical
 - Both categorical
 - One numerical and one categorical

We often identify a response variable from our research question

Response Variable

A **response variable** is defined by the particular research question a study seeks to address

• It measures the outcome of interest in the study

Explanatory Variable

A study will typically examine whether the values of a response variable differ as values of an **explanatory variable** change, and if so, how the two variables are related.

- A given study may examine several explanatory variables for a single response variable
- Sometimes we're interested in viewing the relationship between our **response variable** and **explanatory** variable(s)
- Sometimes we're just interested in viewing the relationship between explanatory variables

Poll Everywhere Question 1

Reduced risk is

Reduced risk is

resp

more the resp

of var

Lesson 8 Slides

7

Learning Objectives

- 1. Visualize relationships between two numeric variables using scatterplots and determine their correlation
- 2. Visualize relationships between two categorical variables using contingency tables and segmented barplots
- 3. Visualize relationships between a categorical variable and a numeric variable using side-by-side boxplots, density plots, and ridgeline plots

Scatterplots

 Scatterplots provide case-by-case view of the relationship between two numerical variables

- We can make a scatterplot of clutch volume vs. body size, with clutch volume on the y-axis and body size on the x-axis
- Each point represents an observation (egg clutch) with its measurement for clutch volumn and body size of parent

Describing associations between 2 numerical variables

- ullet Two variables x and y are
 - Positively associated if y increases as x increases
 - Negatively associated if y decreases as x increases

• If there is no association between the variables, then we say they are uncorrelated or independent

gardless of x, y
generally stays same

- The term "association" is a very general term
 - Can be used for numerical or categorical variables
 - Not specifically referring to linear associations

Female body size and clutch volume are positively associated with each other

(Pearson) Correlation coefficient (r)

- r = -1 indicates a **perfect negative linear relationship**: As one variable increases, the value of the other variable tends to go down, following a *straight line*
- r=0 indicates no linear relationship: The values of both variables go up/down independently of each other
- r=1 indicates a perfect positive linear relationship: As the value of one variable goes up, the value of the other variable tends to go up as well in a linear fashion

• The closer r is to ±1, the stronger the linear association . r

R = 1

Poll Everywhere Question 2

(Pearson) Correlation coefficient (r): formula

where

The (Pearson) correlation coefficient of variables x and y can be computed using the formula

$$r = rac{1}{n-1} \sum_{i=1}^{n} \left(rac{x_i - rac{1}{x}}{s_x}
ight) \left(rac{y_i - rac{1}{y}}{s_y}
ight)$$

And are 0 .

- ullet $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$ are the n paired values of the variables x and y
- ullet s_x and s_y are the sample standard deviations of the variables x and y, respectively
- We can use cor() in R to calculate this! two munic valiables!

14

Guess the correlation game!

Rossman & Chance's applet

Or, for the Atari-like experience

Tracks performance of guess vs. actual, error vs. actual, and error vs. trial

http://www.rossmanchance.com/applets/GuessCorrelation.html

Learning Objectives

- 1. Visualize relationships between two numeric variables using scatterplots and determine their correlation
 - 2. Visualize relationships between two categorical variables using contingency tables and segmented barplots
- 3. Visualize relationships between a categorical variable and a numeric variable using side-by-side boxplots, density plots, and ridgeline plots

From Lesson 4: Contingency tables

- We can start looking at the **contingency table** for hypertension for different age groups
 - Contingency table: type of data table that displays the frequency distribution of two or more categorical variables

Table: Contingency table showing hypertension status and age group, in thousands.

Age Group	Hypertension	No Hypertension	Total		
18-39 years	8836	112206	121042	_	
40-59 years	42109	88663	130772	_	
60+ years	39917	21589	61506	_	
Total	90862	222458	313320		
		8,836,0 both) D D 18-3	people a ogyo k nyp	nave

From Lesson 4: Probability tables

Table: Probability table summarizing hypertension status and age group.

Age Group	Hypertension	No Hypertension	Total	0 0
18-39 years	0.0282	0.3581	0.3863)—marginal for
40-59 years	0.1344	0.2830	0.4174	age grp
60+ years	0.1274	0.0689	0.1963	0 0
Total	0.2900	0.7100	1.0000	-

Joint probability intersection of row and column

• Marginal probability: row or column total

We can work towards visualizing the data in contingency and probability tables

Last time: Barplots

Counts (below) vs. percentages (right)

Barplots with 2 variables: segmented bar plots

• Way of visualizing the information from a contingency table

```
1 ggplot(data = hyp_data,
2     aes(x = Age_Group,
3     fill = (Hypertension)) +
4     geom_bar(position = "fill")
```

hypertension a no hop

obs age

Poll Everywhere Question 3

Barplots with 2 variables: side-by-side bar plots

```
1 ggplot(data = hyp_data,
2     aes(x = Age_Group,
3     fill = Hypertension)) +
4     geom_bar(position = "dodge")
```


Learning Objectives

- 1. Visualize relationships between two numeric variables using scatterplots and determine their correlation
- 2. Visualize relationships between two categorical variables using contingency tables and segmented barplots
 - 3. Visualize relationships between a categorical variable and a numeric variable using side-by-side boxplots, density plots, and ridgeline plots

Visualizing relationships between numerical and categorical variables

- Useful visualizations for directly comparing how the distribution of a numerical variable differs by category:
 - Side-by-side boxplots
 - Side-by-side boxplots with data points
 - Density plots by group
 - Ridgeline plot

We need to introduce a new dataset for this

• Study investigating whether ACTN3 genotype at a particular location (residue 577) is associated with change in muscle function

• Categorical variable: genotypes (CC, TT, CT)

• Numeric variable: Muscle function, measured as percent change in non-dominant arm strength

• We can start the investigation by plotting the relationship

Side-by-side boxplots dataset using is 'famuss'

• We can look at the boxplot of percent change for each genotype

```
aes(x = actn3.r577x,
y = ndrm.ch)) + muscle fn
ggplot(data = famuss,
  geom boxplot() +
  labs(x = "ACTN3 genotype",
       y = "Percent Change in Non-Dominan
```


least likely to me

Side-by-side boxplots with data points

• We can look at the boxplot of percent change for each genotype with points shown so we can see the distribution of observations better

```
ggplot(data = famuss,
                                                           Strength 5250
                 aes(x = actn3.r577x,
                     y = ndrm.ch)) +
                                                           Change in Non-Dominant Arm
           geom boxplot() +
           labs(x = "ACTN3 genotype",
                 y = "Percent Change in Non-Dominant
           geom jitter(aes(color = actn3.r577x),)
            _{\alpha}alpha = 0.8,
             show.legend = FALSE,
     10
             position/= position jitter(
                height = 0.4)
transparency
                                                                    CC
                                                                                      TT
            aes (x, y, color)
                                                        Person W/ CC & 100% change
```

Density plots by group

• Allows us to see the densities of percent change for each genotype

```
1 ggplot(data = famuss, aes(color) = (actn3.r577x) x = ndrm.ch)) +
 > geom_density() + or geom_histogram()
    labs(x = "Percent Change in Non-Dominant Arm Strength", color = "ACTN3 genotype")
```


ACTN3 genotype

Ridgeline plot

- Overlapped densities were easy enough to see with 3 genotypes
- If you have many categories, a ridgeline plot might make it easier to see

Lesson 8 Slides

31

Poll Everywhere Question 4

