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Learning Objectives

1. Calculate a confidence interval when we know the population standard deviation
2. Interpret a confidence interval when we know the population standard deviation

3. Calculate and interpret a confidence interval using the t-distribution when we do not know the population
standard deviation
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Last time: Central Limit Theorem applied to sampling distribution

e CLT tells us that we can model the sampling distribution of mean heights using a normal distribution

Sampling distribution Sampling distribution with Normal dist'n
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Mean height from samples (inches) Mean height from samples (inches)

X ~ Normal(us = 65, SE = 0.424)
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Last time: Sampling Distribution of Sample Means (with the CLT)

e Thesampling distribution is the distribution of sample means
calculated from repeated random samples of the same size from the

same population Sampling distribution with Norn

e |tisuseful to think of a particular sample statistic as being drawn from 0.9 -
a sampling distribution .
_ % 0.6
= So the red sample with x = 65.1 is just one sample mean in the c
sampling distribution = 0s-
0.0 A

63 64 65 66 67
Mean height from samples (inches)

With CLT and X as the RV for the

* Theoretically (using only population values):
X ~ Normal(,uy =, 05 =Sk = %)

e Inreal use (using sample values for SE): SE = 0.424 inches

X ~ Normal(uy = p,0%=8SE == )

p~ = 69 inches

S
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Last time: point estimates

63 64 65 66 67
Mean height from samples (inches)

Sample 50 people Sample 50 people Sample 50 people Sample 50 people
X =65.1,s = 2.8 X =64.7,s =3.1 X =649,s = 3.2 X =661,s =34



This time: Interval estimates of population parameter

e A point estimate consists of a single value
e Aninterval estimate provides a plausible range of values for a parameter
= Remember: parameters are from the population and estimates are from our sample
e We can create a plausible range of values for a population mean (1) from a sample’s mean x
e A confidence interval gives us a plausible range for u

e Confidence intervals take the general form:

(E—m,i—l—m) =T +tm

= Where m is the margin of error
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Point estimates with their confidence intervals for i

Sample 50 people
x =64.7,s = 3.1

Sample 50 people
X =649,s = 3.2

Sample 50 people
X =651s=2.8
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Do these confidence intervals
include u?
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Poll Everywhere Question 1
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Confidence interval (Cl) for the mean u

Confidence interval for i

T

e withSE = %

— Z*>(SE)

if population sd is known

e z* depends on the confidence level

When can this be applied?
e When CLT can be applied!

e When we know the population standard deviation!

e Fora95% Cl, z*is chosen such that 95% of the standard normal curve is between —z* and z*

» This corresponds to z* = 1.96 for a 95% Cl
e We can use R to calculate z* for any desired ClI

e Below is how we calculate 2* for the 95% CI

gnorm(p = 0.975)

[1] 1.959964
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Example: Cl for mean height u with o

Example 1: Using our green sample from previous plots

For arandom sample of 50 people, the mean height is 66.1 inches. Assume the population standard deviation is
3 inches. Find the 925% confidence interval for the population mean.

xr Z*XSE
_ . o
LT 2 X ——
n
66.1 = 1.96 x .
- V50

66.1 = 0.8315576
(66.1 — 0.8315576, 66.1 + 0.8315576)
(65.268, 66.932)

We are 95% confident that the mean height is between 65.268 and 66.932 inches.
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Learning Objectives

1. Calculate a confidence interval when we know the population standard deviation

2. Interpret a confidence interval when we know the population standard deviation

3. Calculate and interpret a confidence interval using the t-distribution when we do not know the population
standard deviation

Lesson 10 Slides

15



How do we interpret confidence intervals? (1/2)

Simulating Confidence Intervals:
http://www.rossmanchance.com/applets/ConfSim.html|

The figure shows Cl’s from 100 simulations:

e The true value of u = 69 is the vertical black line

e The horizontal lines are 95% Cl’'s from 100 samples
» Blue: the Cl “captured” the true value of i

= Red: the Cl did not “capture” the true value of u

What percent of Cl’s captured the true value of u?

Lesson 10 Slides

16


http://www.rossmanchance.com/applets/ConfSim.html

How do we interpret confidence intervals? (2/2)

Actual interpretation:

e [fwewereto
= repeatedly take random samples from a population and
= calculate a 95% Cl for each random sample,

e then we would expect 95% of our Cl’s to contain the true population parameter L.

What we typically write as “shorthand”:

e In general form: We are 95% confident that (the 95% confidence interval) captures the value of the population
parameter.

WRONG interpretation:

e Thereis a 95% chance that (the 95% confidence interval) captures the value of the population parameter.

= For one Cl onits own, it either does or doesn’'t contain the population parameter with probability O or 1. We
just don’t know which!
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Poll Everywhere Question 2
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Learning Objectives

1. Calculate a confidence interval when we know the population standard deviation

2. Interpret a confidence interval when we know the population standard deviation

3. Calculate and interpret a confidence interval using the t-distribution when we do not know the population

standard deviation
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What if we don’t know o ? (1/2)

Simulating Confidence Intervals: http://www.rossmanchance.com/applets/ConfSim.html

Describe process

Confidence intervals

Statistic | Means

Distribution | Normal

Method

[z with sigma

Population
mean (u)
Population
SD (0-)

Sample
size (n)
Number of
intervals
Confidence
level

% [ Recalculate ]
Results

Intervals containing p
95000 / 100000 = 95.0%

95000 / 100000 = 95.0%

Running total containing p

60

65.000

69

Describe process

Confidence intervals

Statistic Means v|
Distribution |Normal v
Method [z with s v|

sy
gcl:))p(u;?tlon
sio ()
ooy

Confidence
level

o5 1%

l Recalculate ]

Results

Intervals containing p
94381 /100000 = 94.4%

Running total containing p

94381 /100000 = 94.4%

60

65.000

69

Describe process

Statistic | Means v|
Distribution |Normal v
Method [t v|

Population
mean (u)
Population
SD (o)

Sample
. 50
Number of
) 100000
intervals
Confidence
level

% [ Recalculate l
Results

Intervals containing p
94968 / 100000 = 95.0%

' Running total containing u
94968 / 100000 = 95.0%

Confidence intervals

60

65.000

69

e The normal distribution doesn’t have a 95% “coverage rate” when using s instead of o

e There's another distribution, called the t-distribution, that does have a 95% “coverage rate” when we use s
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http://www.rossmanchance.com/applets/ConfSim.html

Poll Everywhere Question 3
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What if we don’t know o ? (2/2)

e Inreal life, we don't know what the populationsdis (o)

e |fwereplace o with s inthe SE formula, we add in additional variability to the SE!

o S
— VS, ——

Jao

e Thus when using s instead of o when calculating the SE, we need a different probability distribution with
thicker tails than the normal distribution.

® |n practice this will mean using a different value than 1.96 when calculating the Cl

e |nstead, we use the Student’s t-distribution
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Student’s t-distribution

e |s bell shaped and symmetric

e A“generalized” version of the normal distribution

Normal

e |ts tails are a thicker than that of a normal distribution

= The “thickness” depends on its degrees of freedom:
df = n—1,where n=sample size

I
0

e Asthe degrees of freedom (sample size) increase,

= the tails are less thick, and

m the t-distribution is more like a normal distribution

= in theory, with an infinite sample size the t-distribution
Is a normal distribution.
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Confidence interval (Cl) for the mean u

Confidence interval for i

When can this be applied?

7 + t* « SE e When CLT can be applied!
e When we do not know the population standard
e withSE = % if population sd is not known deviation!
e t* depends on the confidence level and degrees of freedom ‘ qt(p = 0.975, df=9) #df = n-1 ‘
1] 2.262157
» degrees of freedom (df) is: df = n — 1 (nis number of &=
S 1 gt(p = 0.975, df=49) \
observations in sample)
. . o . [1] 2.009575
e (t gives the quartiles for a t-distribution. Need to specify ‘ gt(p = 0.975, df=99) ‘
= the percent under the curve to the left of the quartile [1] 1.984217
s the degrees of freedom=n — 1 ‘ gt(p = 0.975, df=999) ‘
[1] 1.962341

e Note in the R output to the right that t* gets closer to 1.96 as
the sample size increases
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Example: Cl for mean height u with s

Example 2: Using our green sample from previous plots

For arandom sample of 50 people, the mean height is 66.1 inches and the standard deviation is 3.5 inches. Find
the 95% confidence interval for the population mean.

z+ t* x SE
s What is t*?
T+ tFx —
Vn df =n—1=50—1=49
3.9
06.1 = 2.0096 x \/ﬁ t*=qt(p — @_975’ df = 49) = 2.0096

66.1 + 0.994689
(66.1 — 0.994689, 66.1 + 0.994689)
(65.105, 67.095)

We are 95% confident that the mean height is between 65.105 and 67.095 inches.
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Confidence interval (Cl) for the mean i (2 vs. t)

e |n summary, we have two cases that lead to different ways to calculate the confidence interval

Case 1: We know the population standard deviation Case 2: We do not know the population sd
z + ¥ x SE Tz + t* x SE
[ I — O I I P I — _S5 1
with SE = /n and o is the population standard with SE = o and s is the sample standard
deviation deviation
e For 95% ClI, we use: e For 95% ClI, we use:
s 2 =qnorm(p = 0.975) =1.96 n t* =qt(p = 0.975, df = n-1)
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Some final words (said slightly differently?)

e Rule of thumb:
= Use normal distribution ONLY if you know the population standard deviation o
n |[fusing s for the S E, then use the Student’s t-distribution

e For either case, we need to remember when we can calculate the confidence interval:
= n > 30 and population distribution not strongly skewed (using Central Limit Theorem)

o |If there is skew or some large outliers, thenn > 50 gives better estimates

s . < 30 and data approximately symmetric with no large outliers

e [f do not know population distribution, then check the distribution of the data.

= Aka, use what we learned in datavisualization to see what the data look like
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