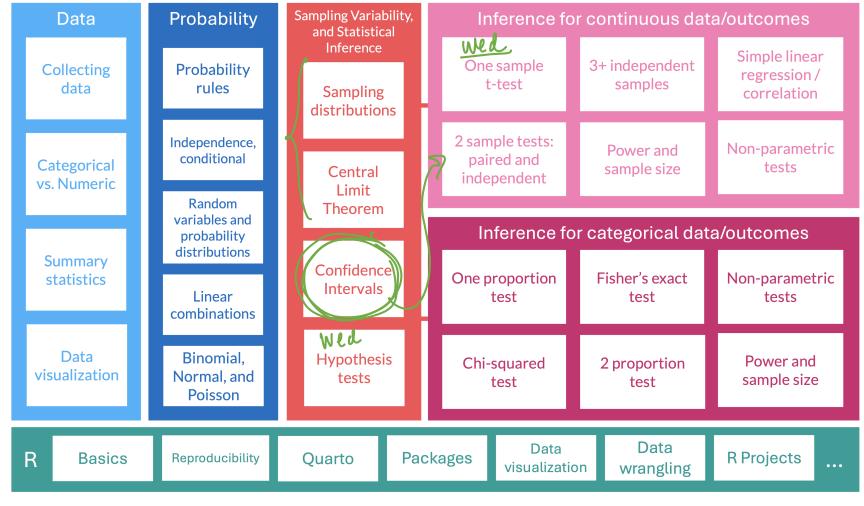
## Lesson 10: Confidence intervals

TB sections 4.2

Meike Niederhausen and Nicky Wakim

2024-11-04

### Where are we?



# **Learning Objectives**

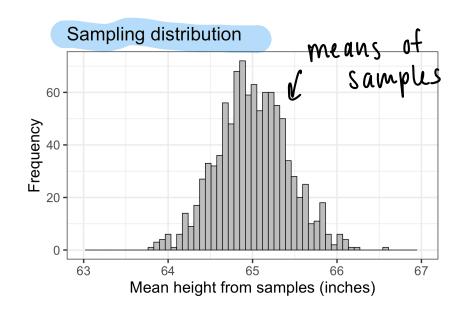
- 1. Calculate a confidence interval when we know the population standard deviation
- 2. Interpret a confidence interval when we know the population standard deviation
- 3. Calculate and interpret a confidence interval using the t-distribution when we do not know the population standard deviation

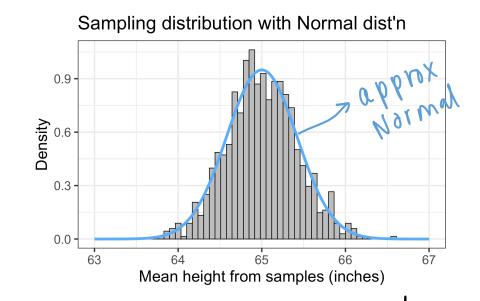
## Learning Objectives

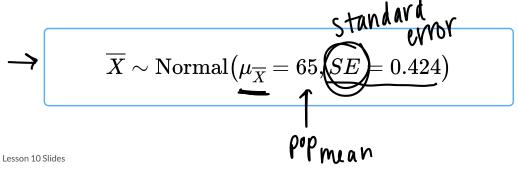
- 1. Calculate a confidence interval when we know the population standard deviation
- 2. Interpret a confidence interval when we know the population standard deviation
- 3. Calculate and interpret a confidence interval *using the t-distribution* when we do not know the population standard deviation

### Last time: Central Limit Theorem applied to sampling distribution

• CLT tells us that we can model the sampling distribution of mean heights using a normal distribution







### Last time: Sampling Distribution of Sample Means (with the CLT)

- The sampling distribution is the distribution of sample means calculated from repeated random samples of the same size from the same population
- It is useful to think of a particular sample statistic as being drawn from a sampling distribution
  - So the red sample with  $\overline{x} = 65.1$  is just one sample mean in the sampling distribution

#### With CLT and X as the RV for the sampling distribution

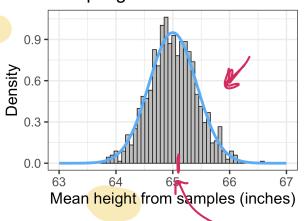
• Theoretically (using only population values):

$$\overline{X} \sim ext{Normal} ig( \mu_{\overline{X}} = \mu, \sigma_{\overline{X}} = SE = \sigma ig)$$

• In real use (using sample values for SE): 
$$\overline{X} \sim \mathrm{Normal} \big( \mu_{\overline{X}} = \mu, \sigma_{\overline{X}} = SE = \mathcal{S} \big)$$



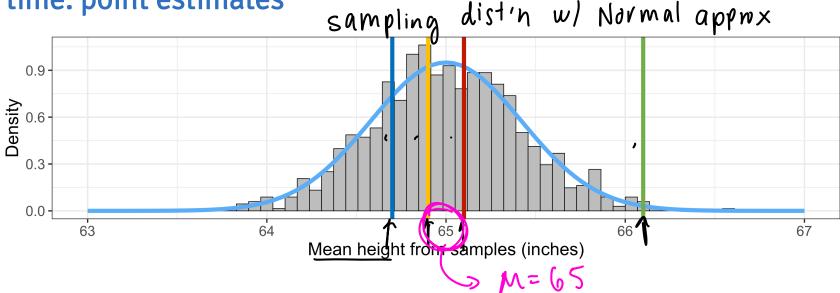
Sampling distribution with Norn



$$\mu_{\overline{X}} = 65$$
 inches

$$SE = 0.424$$
 inches

Last time: point estimates



Sample 50 people  $\bar{x} = 65.1$ , s = 2.8

Sample 50 people  $\bar{x} = 64.7, s = 3.1$ 

Sample 50 people  $\bar{x} = 64.9, s = 3.2$ 

Sample 50 people  $\bar{x} = 66.1$ , s = 3.4

### This time: Interval estimates of population parameter

- A **point estimate** consists of a single value
- An interval estimate provides a plausible range of values for a parameter (population)
  - Remember: parameters are from the population and estimates are from our sample
- We can create a plausible range of values for a population mean  $(\mu)$  from a sample's mean  $\overline{x}$
- A confidence interval gives us a plausible range for  $\mu$
- Confidence intervals take the general form:

$$(\overline{x}-m,\overline{x}+m)=\overline{x}\pm m$$

■ Where *m* is the margin of error

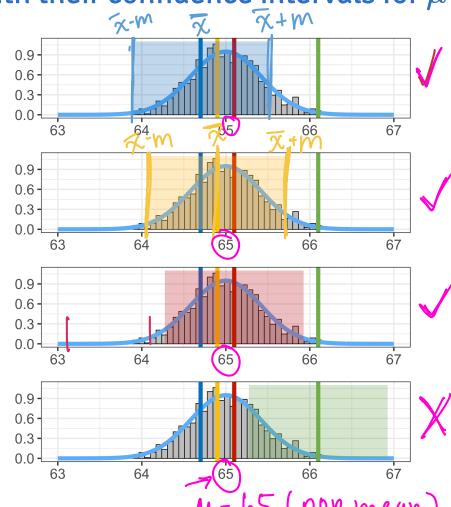
### Point estimates with their confidence intervals for $\mu$

Sample 50 people  $\bar{x} = 64.7, s = 3.1$ 

Sample 50 people  $\bar{x} = 64.9$ , s = 3.2

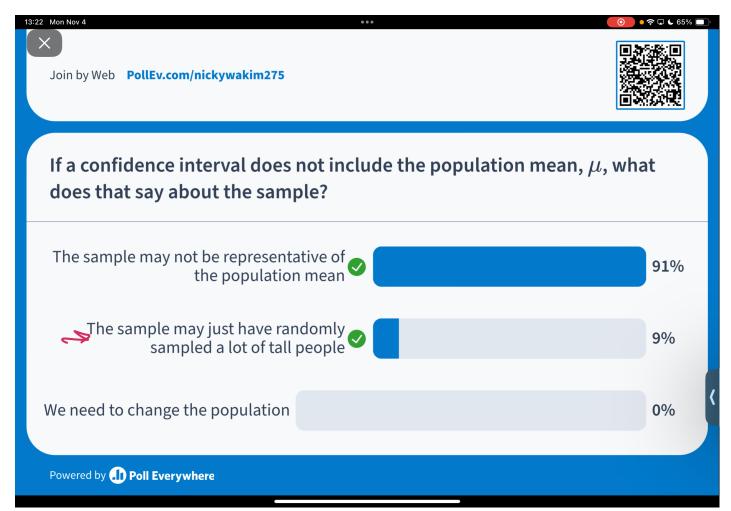
Sample 50 people  $\bar{x} = 65.1, s = 2.8$ 

Sample 50 people  $\bar{x} = 66.1, s = 3.4$ 



Do these confidence intervals include  $\mu$ ?

### Poll Everywhere Question 1



### Confidence interval (CI) for the mean $\mu$

#### Confidence interval for $\mu$

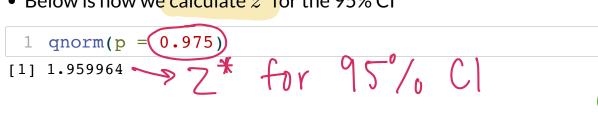
$$\overline{x} \, \pm \, z^* imes \mathrm{SE}$$

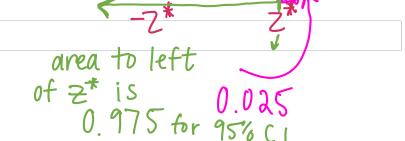
ullet with  $\mathrm{SE}=rac{\sigma}{\sqrt{n}}$  if population sd is known

#### When can this be applied?

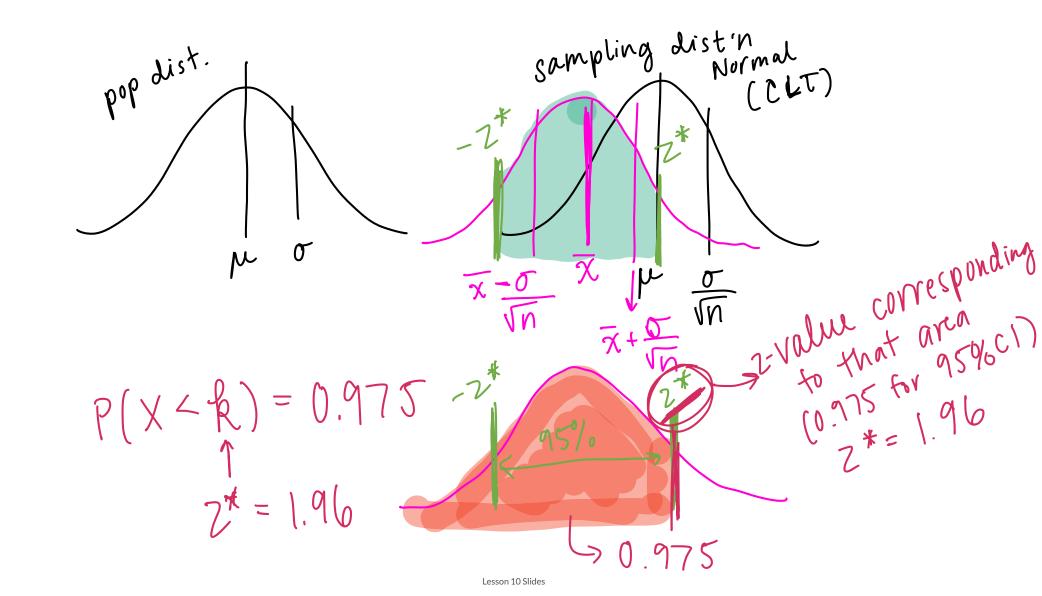
- When CLT can be applied!
- When we know the population standard deviation!

- $z^*$  depends on the confidence level
- For a 95% CI,  $z^*$  is chosen such that 95% of the standard normal curve is between  $-z^*$  and  $z^*$ 
  - This corresponds to  $z^* = 1.96$  for a 95% CI
- We can use R to calculate z\* for any desired CI
- Below is how we calculate z\* for the 95% CI





0.05



# Example: CI for mean height $\mu$ with $\sigma$ (pop sq)

#### Example 1: Using our green sample from previous plots

For a random sample of 50 people, the mean height is 66.1 inches. <u>Assume</u> the population standard deviation is inches. Find the 95% confidence interval for the population mean.

$$x \pm m$$
 $x \pm z^* \times SE$ 
 $y = 50$ 
 $y = 50$ 
 $66.1 \pm 1.96 \times \sqrt{50}$ 
 $y = 50$ 
 $66.1 \pm 0.8315576$  margin of error (m)
 $(66.1 - 0.8315576, 66.1 + 0.8315576)$ 
 $(65.268, 66.932)$ 

We are 95% confident that the mean height is between 65.268 and 66.932 inches.

# **Learning Objectives**

- 1. Calculate a confidence interval when we know the population standard deviation
  - 2. Interpret a confidence interval when we know the population standard deviation
- 3. Calculate and interpret a confidence interval *using the t-distribution* when we do not know the population standard deviation

### How do we interpret confidence intervals? (1/2)

Simulating Confidence Intervals:

http://www.rossmanchance.com/applets/ConfSim.html

The figure shows CI's from 100 simulations:

- ullet The true value of  $\mu=65$  s the vertical black line
- The horizontal lines are 95% CI's from 100 samples
  - Blue: the CI "captured" the true value of  $\mu$
  - Red: the CI did not "capture" the true value of  $\mu$

What percent of CI's captured the true value of  $\mu$ ?

100 samples, take the mean of each sample, then I take 95% CI

Lesson 10 Slides

Sample

### How do we interpret confidence intervals? (2/2)

#### Actual interpretation:

- If we were to
  - repeatedly take random samples from a population and
  - calculate a 95% CI for each random sample,
- then we would expect 95% of our Cl's to contain the true population parameter  $\mu$ .

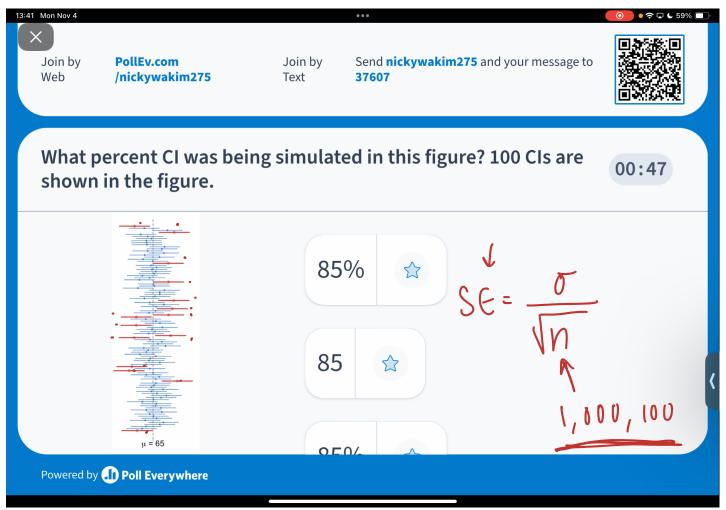
#### What we typically write as "shorthand":

• <u>In general form</u>: We are 95% confident that (the 95% confidence interval) captures the value of the population parameter.

## WRONG interpretation: \_\_ translates to prob of 0.95

- There is a 95% chance that (the 95% confidence interval) captures the value of the population parameter.
  - For one CI on its own, it either does or doesn't contain the population parameter with probability 0 or 1. We just don't know which!

### Poll Everywhere Question 2

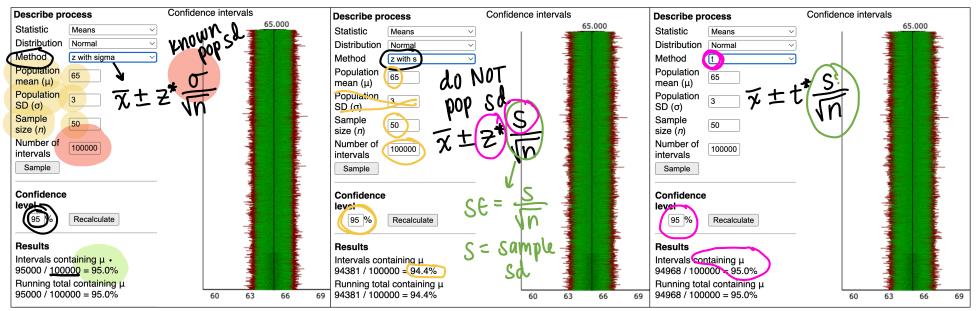


## Learning Objectives

- 1. Calculate a confidence interval when we know the population standard deviation
- 2. Interpret a confidence interval when we know the population standard deviation
  - 3. Calculate and interpret a confidence interval *using the t-distribution* when we do not know the population standard deviation

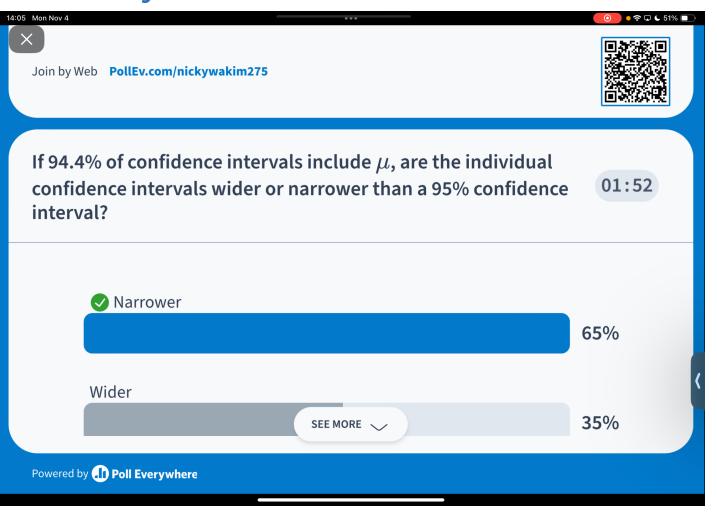
### What if we don't know $\sigma$ ? (1/2)

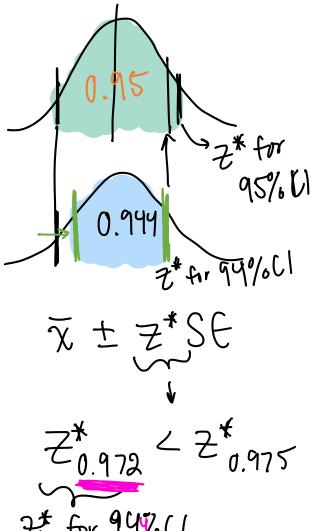
Simulating Confidence Intervals: <a href="http://www.rossmanchance.com/applets/ConfSim.html">http://www.rossmanchance.com/applets/ConfSim.html</a>



- The normal distribution doesn't have a 95% "coverage rate" when using s instead of  $\sigma$
- There's another distribution, called the t-distribution, that does have a 95% "coverage rate" when we use s

### Poll Everywhere Question 3





### What if we don't know $\sigma$ ? (2/2)

S = standard dev from sample

- In real life, we don't know what the population sd is ( $\sigma$ )
- If we replace  $\sigma$  with s in the SE formula, we add in additional variability to the SE!

$$\frac{\sigma}{\sqrt{n}}$$
 vs.  $\frac{s}{\sqrt{n}}$ 

- Thus when using s instead of  $\sigma$  when calculating the SE, we **need a different probability distribution** with thicker tails than the normal distribution.
  - In practice this will mean using a different value than 1.96 when calculating the CI
- Instead, we use the **Student's t-distribution**

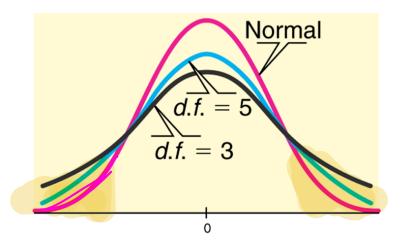
15%

### Student's t-distribution

- Is bell shaped and symmetric
- A "generalized" version of the normal distribution

- Its tails are a thicker than that of a normal distribution
  - The "thickness" depends on its degrees of freedom: df = n-1, where n = sample size

- As the degrees of freedom (sample size) increase,
  - the tails are less thick, and
  - the t-distribution is more like a normal distribution
  - in theory, with an infinite sample size the *t*-distribution is a normal distribution.



### Confidence interval (CI) for the mean $\mu$

## Confidence interval for $\mu$

$$\overline{x} \pm t^* \times SE$$

• with  $SE = \frac{s}{\sqrt{n}}$  if population sd is not known

- $t^*$  depends on the confidence level and degrees of freedom
  - degrees of freedom (df) is: df = n 1 (n is number of observations in sample)
- qt gives the quartiles for a t-distribution. Need to specify
  - the percent under the curve to the left of the quartile
  - the degrees of freedom = n-1
- Note in the R output to the right that  $t^{*}$  gets closer to 1.96 as the sample size increases

#### When can this be applied?

- When CLT can be applied!
- When we do not know the population standard deviation!

## Example: CI for mean height $\mu$ with s

#### Example 2: Using our green sample from previous plots

For a random sample of 50 people, the mean height is 66.1 inches and the standard deviation is 3.5 inches. Find the 95% confidence interval for the population mean.

We are 95% confident that the mean height is between 65.105 and 67.095 inches.

### Confidence interval (CI) for the mean $\mu$ (z vs. t)

• In summary, we have two cases that lead to different ways to calculate the confidence interval

#### Case 1: We know the population standard deviation

$$\overline{x} \pm z^* \times SE$$

• with  $\mathrm{SE} = \frac{\sigma}{\sqrt{n}}$  and  $\sigma$  is the population standard deviation

- For 95% CI, we use:
  - $z^* = qnorm(p = 0.975) = 1.96$

### Case 2: We do not know the population sd

$$\overline{x} \pm t^* \times SE$$

ullet with  $\mathrm{SE}=rac{s}{\sqrt{n}}$  and s is the sample standard deviation

• For 95% CI, we use:

$$t^* = qt(p = 0.975, df = n-1)$$

### Some final words (said slightly differently?)

- Rule of thumb:
  - Use normal distribution ONLY if you know the population standard deviation  $\sigma$
  - If using s for the SE, then use the Student's t-distribution

- For either case, we need to remember when we can calculate the confidence interval:
  - $n \ge 30$  and population distribution not strongly skewed (using Central Limit Theorem)
    - $\circ$  If there is skew or some large outliers, then n > 50 gives better estimates
- lacksquare = n < 30 and data approximately symmetric with no large outliers

normal &

- If do not know population distribution, then check the distribution of the data.
  - Aka, use what we learned in data visualization to see what the data look like