Lesson 13: Inference for difference in means from two independent samples

TB sections 5.3

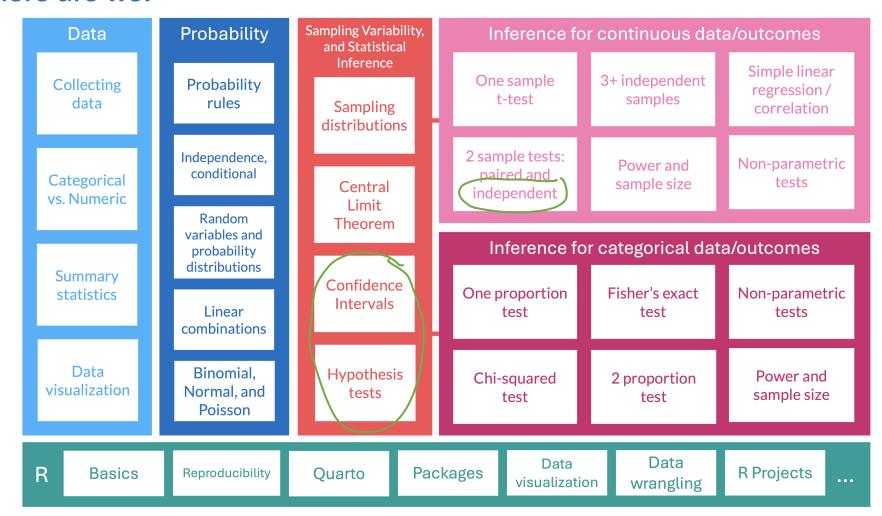
Meike Niederhausen and Nicky Wakim

2024-11-13

Learning Objectives

- 1. Identify when a research question or dataset requires two independent sample inference.
- 2. Construct and interpret confidence intervals for difference in means of two independent samples.
- 3. Run a hypothesis test for two sample independent data and interpret the results.

Where are we?



Different types of inference based on different data types

Lesson	Section	Population parameter	Symbol (pop)	Point estimate	Symbol (sample)	SE
11	5.1	Pop mean	μ	Sample mean	\overline{x}	$\frac{s}{\sqrt{n}}$
12	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	\overline{x}_d	$rac{s_d}{\sqrt{n}}$
13	5.3	Diff in pop means	$\mu_1 - \mu_2$	Diff in sample means	$\overline{x}_1 - \overline{x}_2$????
15	8.1	Pop proportion	p	Sample prop	\widehat{p}	
15	8.2	Diff in pop prop's	p_1-p_2	Diff in sample prop's	$\widehat{p}_1 - \widehat{p}_2$	

1) independ, 2 samples

Learning Objective

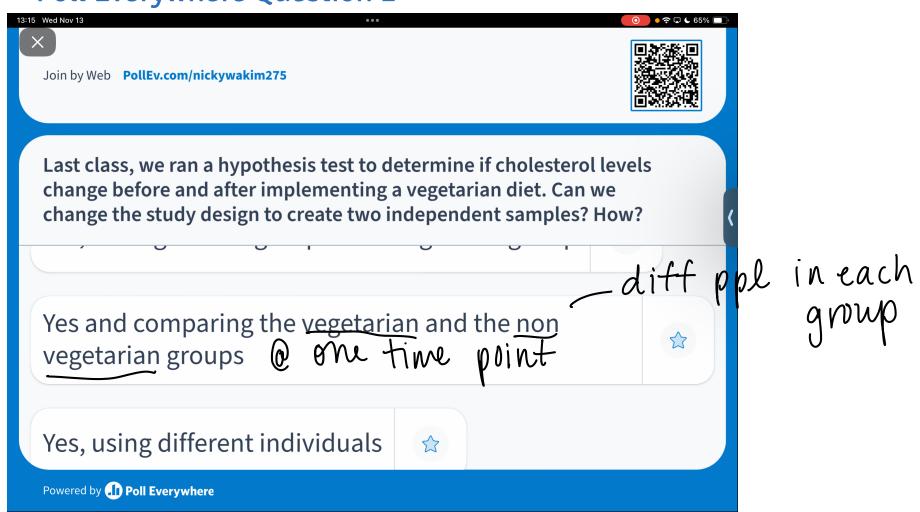
What are data from two independent sample?

- Two independent samples: Individuals between and within samples are independent
 - Typically: measure the same outcome for each sample, but typically the two samples differ based on a single variable

- Examples
 - Any study where participants are randomized to a control and treatment group
 - Study with two groups based on their exposure to some condition (can be observational)
 - Book: "Does treatment using embryonic stem cells (ESCs) help improve heart function following a heart attack?"
 - Book: "Is there evidence that newborns from mothers who smoke have a different average birth weight than newborns from mothers who do not smoke?"

• Pairing (like comparing before and after) may not be feasible

Poll Everywhere Question 1



For two independent samples: Population parameters vs. sample statistics

Population parameter

- Population 1 mean: μ_1
- Population 2 mean: μ_2

- Difference in means: $\mu_1 \mu_2$
- Population 1 standard deviation: σ_1
- Population 2 standard deviation: σ_2

Sample statistic (point estimate)

- Sample 1 mean: \overline{x}_1
- Sample 2 mean: \overline{x}_2

• Difference in sample means: $\overline{x}_1 - \overline{x}_2$

- Sample 1 standard deviation: s₁
- Sample 2 standard deviation: s₂

Does caffeine increase finger taps/min (on average)?

• Use this example to illustrate how to calculate a confidence interval and perform a hypothesis test for two independent samples

Study Design:¹

- 70 college students students were trained to tap their fingers at a rapid rate
- Each then drank 2 cups of coffee (double-blind)
 - Control group: decaf
 - Caffeine group: ~ 200 mg caffeine
- After 2 hours, students were tested.
- Taps/minute recorded

Does caffeine increase finger taps/min (on average)?

- Load the data from the csv file CaffeineTaps May _ n35 . CSV
- The code below is for when the data file is in a folder called data that is in your R project folder (your working directory)

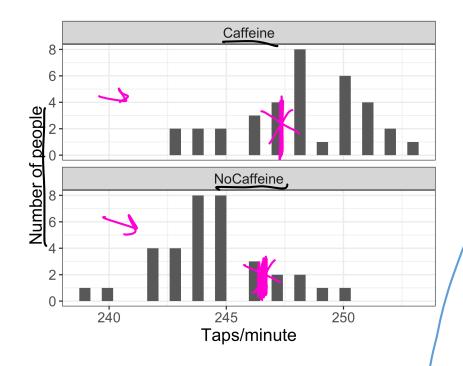
```
1 CaffTaps <- read.csv(here::here("data", "CaffeineTaps_n35.csv"))
2
3 glimpse(CaffTaps)

Rows: 70
Columns: 2
$ Taps <int> 246, 248, 250, 252, 248, 250, 246, 248, 245, 250, 242, 245, 244,...
$ Group <chr> "Caffeine", "Caff
```

Non caffeine

EDA: Explore the finger taps data

► Code to make these histograms



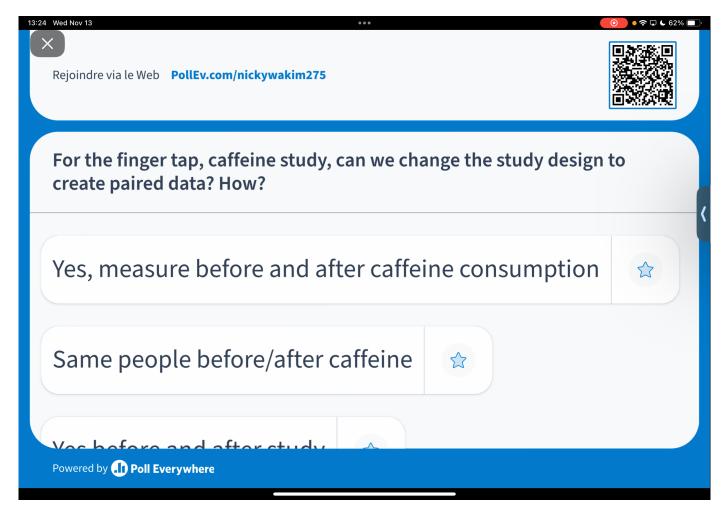
Summary statistics stratified by group

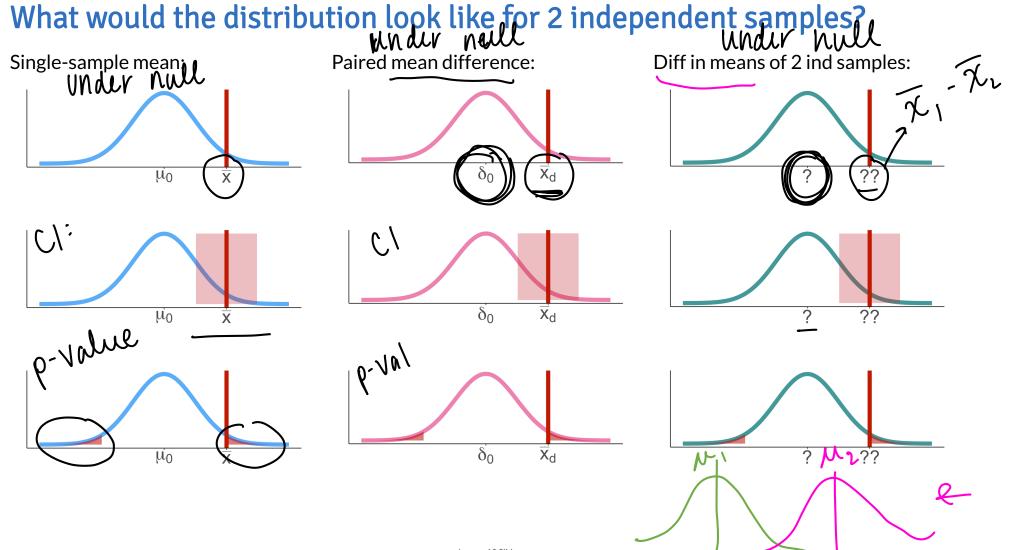
Group	variable	n	mean	sd
Caffeine	Taps	35	248.114	2.621
NoCaffeir	ne Taps	35	244.514)	2.318
Nocaliell	ie iaps	34	244.514)	2.510

Then calculate the difference between the means:

- Note that we cannot calculate 35 differences in taps because these data are not paired!!
- Different individuals receive caffeine vs. do not receive caffeine

Poll Everywhere Question 2





What distribution does $X_1 - X_2$ have? (when we know pop sd's)

- Let X_1 and X_2 be the means of random samples from two independent Isum of normals groups, with parameters shown in table:
- Some theoretical statistics:
 - If \overline{X}_1 and \overline{X}_2 are independent normal RVs, then X_1-X_2 is also normal
 - What is the mean of $X_1 X_2$?

$$E[\overline{X}_1 - \overline{X}_2] = E[\overline{X}_1] - E[\overline{X}_2] = \mu_1 - \mu_2$$

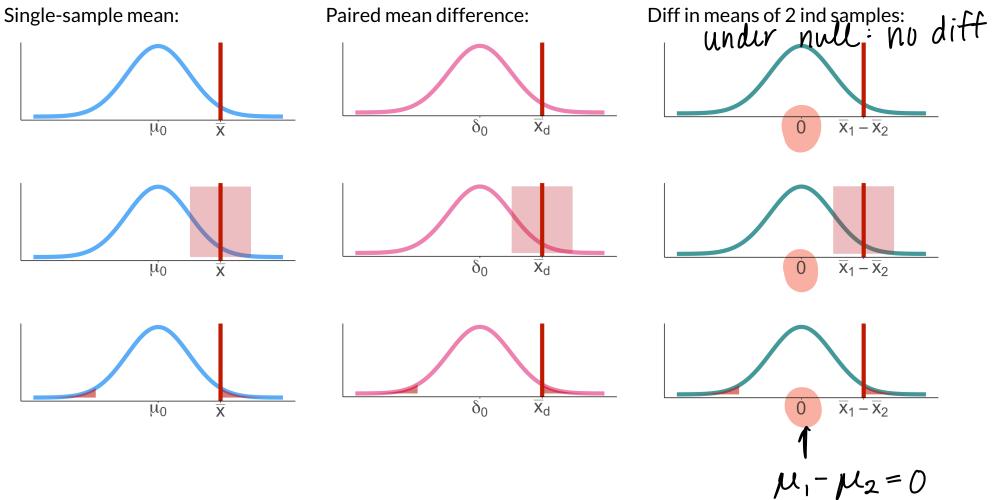
ullet What is the standard deviation of $\overline{X}_1 - \overline{X}_2$? ullet in dependent

$$Var(\overline{X}_1-\overline{X}_2)=Var(\overline{X}_1)+Var(\overline{X}_2)=egin{pmatrix}\sigma_1^2\\n_1\end{pmatrix}+egin{pmatrix}\sigma_2^2\\n_2\end{pmatrix}$$
 $SD(\overline{X}_1-\overline{X}_2)=\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$

$$\begin{array}{c|c} \textbf{Gp 1} & \textbf{Gp 2} \\ \hline \text{sample size} & n_1 & n_2 \\ \hline \text{pop mean} & \mu_1 & \mu_2 \\ \hline \text{pop sd} & \sigma_1 & \sigma_2 \\ \end{array}$$

$$\frac{\overline{X_1} - \overline{X_2}}{\sqrt{N_1}} \sim \frac{\sqrt{N_1} + \sqrt{N_2}}{\sqrt{N_1}}$$
Normal $\left(\frac{\mu_1 - \mu_1}{N_1 + N_2}\right)$

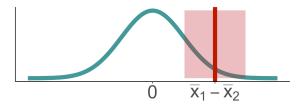
What would the distribution look like for 2 independent samples?



Approaches to answer a research question

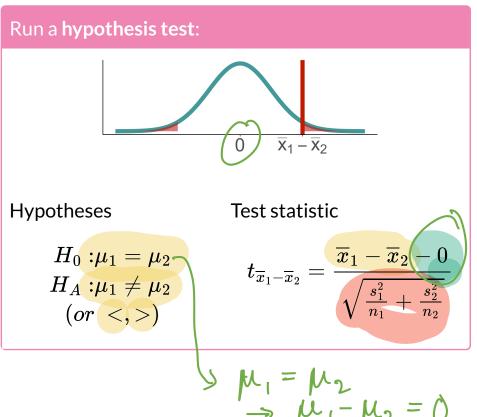
• Research question is a generic form for 2 independent samples: Is there evidence to support that the population means are different from each other?

Calculate **CI for the mean difference** δ :



$$\overline{x}_1 - \overline{x}_2 \pm \ t^* imes \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

• with t^* = t-score that aligns with specific confidence interval



(2) Confidence Interval

Learning Objectives

95% CI for the difference in population mean taps $\mu_1 - \mu_2$

Confidence interval for $\mu_1 - \mu_2$

$$\overline{x}_1 - \overline{x}_2 \pm t^* imes ext{SE}$$

• with $ext{SE} = \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$ if population sd is not known

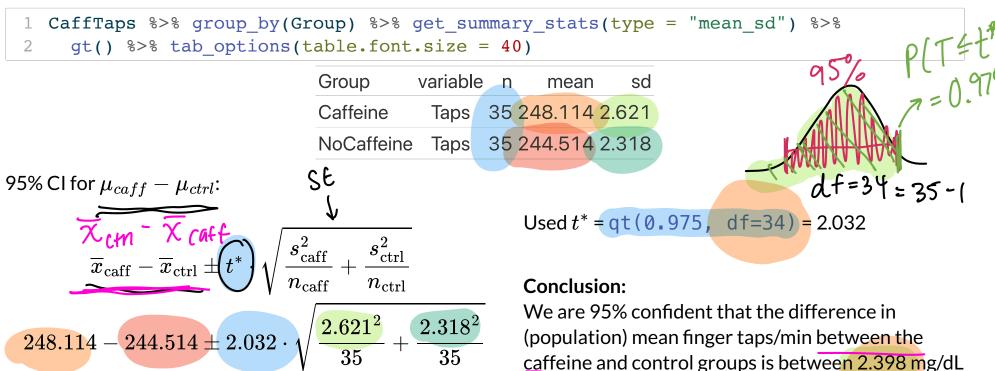
- t^* depends on the confidence level and degrees of freedom
 - degrees of freedom (df) is: df = n 1
 - n is minimum between n_1 and n_2

for hand calculating

95% CI for the difference in population mean taps

 $3.6 \pm 2.032 \cdot \sqrt{0.196 + 0.154}$

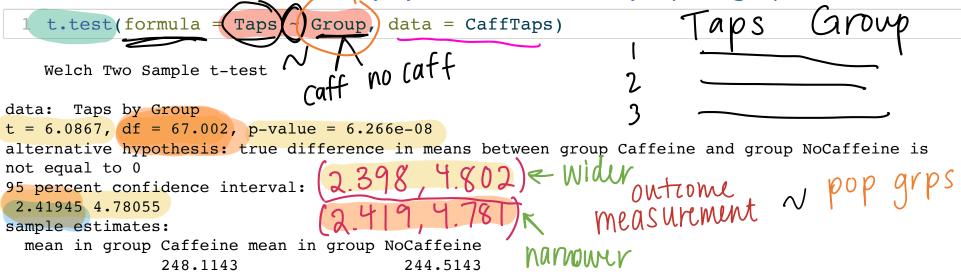
(2.398,4.802)



Lesson 13 Slides

and 4.802 mg/dL.

95% CI for the difference in population mean taps (using R)



► We can tidy the output

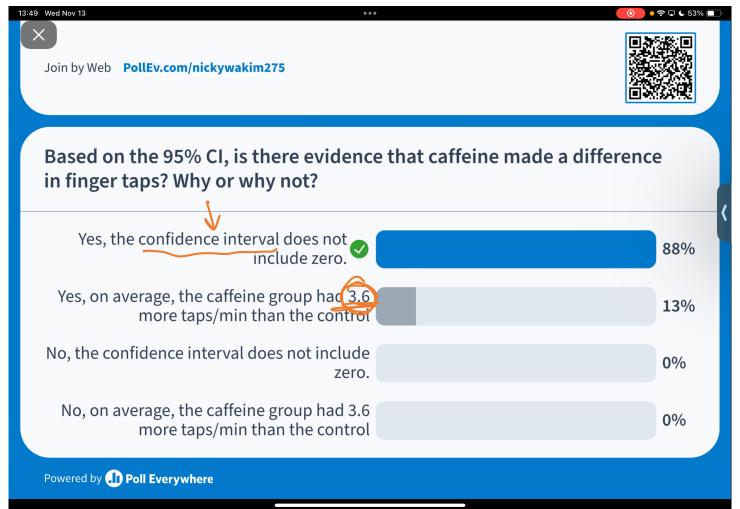
estimate estimate1 estimate2	statistic	p.value parameter	conf.low conf.high method	alternative
3.6 248.1143 244.5143 6	6.086677 6.26	35631e-08 67.00222	2.41945 4.78055 Welch Tw	o Sample t-test two.sided

Conclusion:

We are 95% confident that the difference in (population) mean finger taps/min between the caffeine and control groups is between 2398 mg/dL and 4.802 mg/dL.

2.419 4.781

Poll Everywhere Question 3



Learning Objectives

3 hyp testings

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the test statistic.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check the assumptions

- The assumptions to run a hypothesis test on a sample are:
 - Independent observations: Each observation from both samples is independent from all other observations
 - Approximately normal sample or big n: the distribution of each sample should be approximately normal, or the sample size of each sample should be at least 30

• These are the criteria for the Central Limit Theorem in Lesson 09: Variability in estimates

- In our example, we would check the assumptions with a statement:
 - The observations are independent from each other. Each caffeine group (aka sample) has 35 individuals. Thus, we can use CLT to approximate the sampling distribution for each sample.

Step 2: Set the level of significance

- Before doing a hypothesis test, we set a cut-off for how small the p-value should be in order to reject H_0 .
- Typically choose $\alpha = 0.05$

• See Lesson 11: Hypothesis Testing 1: Single-sample mean

Step 3: Null & Alternative Hypotheses

Notation for hypotheses (for two ind samples)

$$H_0: \mu_1 = \mu_2 \ ext{vs. } H_A: \mu_1
eq , <, ext{or,} > \mu_2$$

Hypotheses test for example

$$H_0: \mu_{caff} = \mu_{ctrl} \ ext{vs.} \ H_A: \mu_{caff} > \mu_{ctrl} \ ext{}$$

• Under the null hypothesis: $\mu_1=\mu_2$, so the difference in the means is $\mu_1-\mu_2=0$

$$H_A: \mu_1
eq \mu_2$$

 not choosing a priori whether we believe the population mean of group 1 is different than the population mean of group 2

$$H_A:\mu_1<\mu_2$$

• believe that population mean of group 1 is greater than population mean of group 2

$$H_A:\mu_1>\mu_2$$

 believe that population mean of group 1 is than population mean of group 2

ullet $H_A:\mu_1
eq\mu_2$ is the most common option, since it's the most conservative

Step 3: Null & Alternative Hypotheses: another way to write it

ullet Under the null hypothesis: $\mu_1=\mu_2$, so the difference in the means is $\mu_1-\mu_2=0$

$$H_A:\mu_1
eq\mu_2$$

 not choosing a priori whether we believe the population mean of group 1 is different than the population mean of group 2

$$H_A: \mu_1-\mu_2
eq 0$$

 not choosing a priori whether we believe the difference in population means is greater or less than 0

$$H_A: \mu_1 > \mu_2$$

 believe that population mean of group 1 is greater than population mean of group 2

$$H_A: \mu_1-\mu_2>0$$

 believe that difference in population means (mean 1 mean 2) is greater than 0

$$H_A: \mu_1 < \mu_2$$

 believe that population mean of group 1 is less than population mean of group 2

$$H_A: \mu_1-\mu_2<0$$

 believe that difference in population means (mean 1 mean 2) is less than 0

Step 3: Null & Alternative Hypotheses

• Question: Is there evidence to support that drinking caffeine increases the number of finger taps/min?

Null and alternative hypotheses in words

- H_0 : The population difference in mean finger taps/min between the caffeine and control groups is 0
- H_A : The population difference in mean finger taps/min between the caffeine and control groups is greater than 0

Null and alternative hypotheses in **symbols**

$$egin{aligned} H_0:&\mu_{caff}-\mu_{ctrl}=0\ H_A:&\mu_{caff}-\mu_{ctrl}>0 \end{aligned}$$

$$H_A: \mu_{caff} - \mu_{ctrl} > 0$$

Step 4: Test statistic

Recall, for a two sample independent means test, we have the following test statistic:

$$t_{\overline{x}_1-\overline{x}_2}=\underbrace{\overline{x}_1-\overline{x}_2-0}_{\text{VN dV}}$$
 und $\overline{x}_1,\overline{x}_2$ are the sample means $\mu_0=0$ is the mean value specified in H_0 s_1,s_2 are the sample SD's

- s_1, s_2 are the sample SD's
- n_1, n_2 are the sample sizes

- Statistical theory tells us that $t_{\overline{x}_1-\overline{x}_2}$ follows a **student's t-distribution** with
 - $ullet dfpprox {\sf smaller} \ {\sf of} \ n_1-1 \ {\sf and} \ n_2-1$
 - this is a conservative estimate (smaller than actual df)

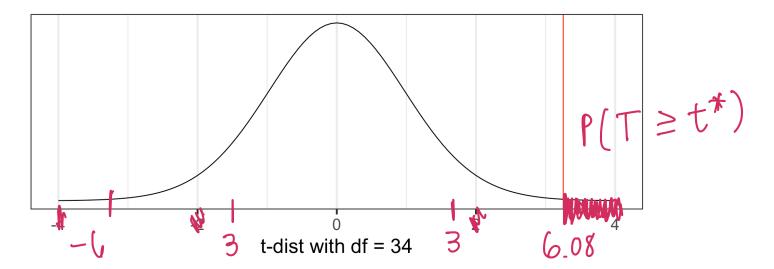
Step 4: Test statistic (where we do not know population sd)

From our example: Recall that $\overline{x}_1=248.114$, $s_1=2.621$, $n_1=35$, $\overline{x}_2=244.514$, $s_2=2.318$, and $n_2=35$:

The test statistic is:

$$\text{test statistic} = t_{\overline{x}_1 - \overline{x}_2} = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{248.114 - 244.514 - 0}{\sqrt{\frac{2.621^2}{35} + \frac{2.318^2}{35}}} = \underline{6.0869}$$

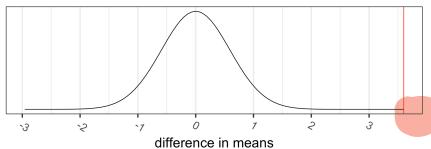
ullet Statistical theory tells us that $t_{\overline{x}}$ follows a **Student's t-distribution** with df=n-1=34

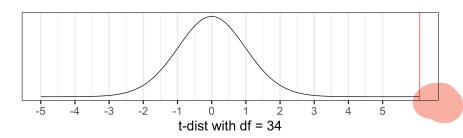


Step 5: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.

Sampling distribution of difference in means





Calculate the p-value using the **Student's t**-distribution with df=n-1=35-1=34:

p-value =
$$P(T > 6.08691)$$

= $3.3 \times 10^{-7} < 0.00$

```
1 pt(tstat,
2    df = min(n1 - 1, n2 - 1),
3    lower.tail = FALSE)
[1] 3.321969e-07
```

Step 4-5: test statistic and p-value together using t.test()

• I will have reference slides at the end of this lesson to show other options and how to "tidy" the results

244.5143

```
Welch Two Sample t-test

data: Taps by Group

t = 6.0867, df = 67.002, p-value = 3.133e-08

alternative hypothesis: true difference in means between group Caffeine and group NoCaffeine is greater than 0

95 percent confidence interval:
2.613502 Inf

sample estimates:
mean in group Caffeine mean in group NoCaffeine
```

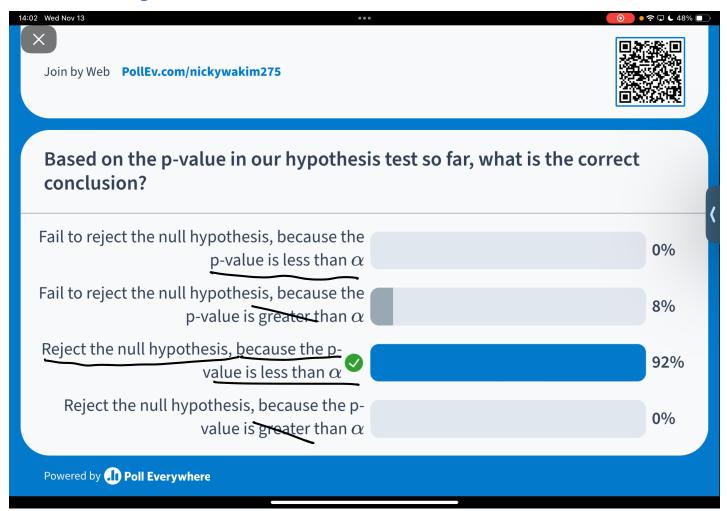
- Why are the degrees of freedom different? (see Slide Section 5.4)
 - Degrees of freedom in R is more accurate

248,1143

Using our approximation in our calculation is okay, but conservative

p-value hand calc p-value from t. test()

Poll Everywhere Question 4



p-value 3.3×10⁻⁸ 40.00)

Step 6: Conclusion to hypothesis test

$$H_0: \mu_1 = \mu_2$$
vs. $H_A: \mu_1 > \mu_2$

- ullet Need to compare p-value to our selected lpha=0.05
- Do we reject or fail to reject H_0 ?

If p-value $< \alpha$, reject the null hypothesis

• There is sufficient evidence that the difference in population means is discernibly greater than 0 (p-value = ___)

discernibly diff

If $p ext{-value} \geq lpha$, fail to reject the null hypothesis

There is insufficient evidence that the difference in population means is discernibly greater than 0 (p-value = ___)

than 0

Step 6: Conclusion to hypothesis test

$$egin{aligned} H_0:&\mu_{caff}-\mu_{ctrl}=0\ H_A:&\mu_{caff}-\mu_{ctrl}>0 \end{aligned}$$

- Recall the p-value = 3×10^{-8}
- Use α = 0.05.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is sufficient evidence that the (population) difference in mean finger taps/min with vs. without caffeine is greater than 0 (p-value < 0.001).
- More realistic manuscript conclusion:
 - The mean finger taps/min were 248.114 (SD = 2.621) and 244.514 (SD = 2.318) for the control and caffeine groups, and the increase of 3.6 taps/min was statistically discrenible (p-value \checkmark).

0.001

Reference: Ways to run a 2-sample t-test in R

R: 2-sample t-test (with long data)

- The CaffTaps data are in a long format, meaning that
 - all of the outcome values are in one column and
 - another column indicates which group the values are from
- This is a common format for data from multiple samples, especially if the sample sizes are different.

Welch Two Sample t-test

tidy the t.test output

```
# use tidy command from broom package for briefer output that's a tibble
tidy(Taps_2ttest) %>% gt() %>% tab_options(table.font.size = 40)

estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative

3.6 248.1143 244.5143 6.086677 3.132816e-
08 67.00222 2.613502 Inf Welch Two
Sample t-test greater
```

• Pull the p-value:

```
1 tidy(Taps_2ttest)$p.value # we can pull specific values from the tidy output
[1] 3.132816e-08
```

R: 2-sample t-test (with wide data)

```
# make CaffTaps data wide: pivot wider needs an ID column so that it
   # knows how to "match" values from the Caffeine and NoCaffeine groups
   CaffTaps wide <- CaffTaps %>%
      mutate(id = c(rep(1:10, 2), rep(11:35, 2))) %>% # "fake" IDs for pivot wider ste
      pivot wider(names from = "Group",
                   values from = "Taps")
    glimpse(CaffTaps wide)
Rows: 35
Columns: 3
$ id
           <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...
           <int> 246, 248, 250, 252, 248, 250, 246, 248, 245, 250, 251, 251,...
$ Caffeine
$ NoCaffeine <int> 242, 245, 244, 248, 247, 248, 242, 244, 246, 242, 244, 245,...
 1 t.test(x) = CaffTaps wide Caffeine, y = CaffTaps wide NoCaffeine, alternative = "gre
     tidy() %>% gt() %>% tab options(table.font.size = 40)
estimate estimate1 estimate2
                                        p.value parameter conf.low conf.high method
                                                                                     alternative
                            statistic
                                   3.132816e-
67.00222 2.613502
    3.6 248.1143 244.5143 6.086677
                                                                         Sample t-test
```

Why are the df's in the R output different?

From many slides ago:

- Statistical theory tells us that $t_{\overline{x}_1-\overline{x}_2}$ follows a **student's t-distribution** with
 - $ullet dfpprox {\sf smaller} \ {\sf of} \ n_1-1 \ {\sf and} \ n_2-1$
 - ullet this is a **conservative** estimate (smaller than actual df)

The actual degrees of freedom are calculated using Satterthwaite's method:

$$u = rac{[(s_1^2/n_1) + (s_2^2/n_2)]^2}{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)} = rac{[SE_1^2 + SE_2^2]^2}{SE_1^4/df_1 + SE_2^4/df_2}$$

Verify the *p*-value in the R output using ν = 17.89012:

```
1 pt(3.3942, df = 17.89012, lower.tail = FALSE)
[1] 0.001627588
```