Lesson 16: Chi-squared test

TB sections 8.3-8.4

Meike Niederhausen and Nicky Wakim 2024-11-20

Learning Objectives

- 1. Understand the Chi-squared test and the expected cell counts under the null hypothesis distribution.
- 2. Determine if two categorical variables are associated with one another using the Chi-squared test.

Where are we?

Sampling Variability, **Probability** Data Inference for continuous data/outcomes and Statistical Inference Simple linear 3+ independent One sample **Probability** Collecting regression / t-test samples data rules Sampling correlation distributions 2 sample tests: Independence, Non-parametric Power and conditional paired and Categorical tests sample size Central independent vs. Numeric Limit Random Theorem variables and Inference for categorical data/outcomes probability distributions **Summary** Confidence Fisher's exact One proportion Non-parametric statistics Intervals Linear test tests test combinations Data Binomial, Hypothesis Power and Chi-squared 2 proportion visualization Normal, and tests sample size test test Poisson Data Data R Packages R Projects **Basics** Reproducibility Quarto • • • visualization wrangling

Last time

- We looked at inference for a single proportion
- We looked at inference for a difference in two independent proportions

• If there are two groups, we could see if they had different proportions by testing if the difference between the proportions were the same (null) or different (alternative, two-sided, \neq)

- What happens when we want to compare two or more groups' proportions?
 - Can no longer rely on the difference in proportions
 - Need a new method to make inference (Chi-squared test!)

Learning Objectives

1. Understand the Chi-squared test and the expected cell counts under the null hypothesis distribution.

2. Determine if two categorical variables are associated with one another using the Chi-squared test.

From Lesson 4: Example: hypertension prevalence (1/2)

• US CDC estimated that between 2011 and 2014¹, 29% of the population in America had hypertension

- A health care practitioner seeing a new patient would expect a 29% chance that the patient might have hypertension
 - However, this is only the case if nothing else is known about the patient

From Lesson 4: Example: hypertension prevalence (2/2)

- Prevalence of hypertension varies significantly with age
 - Among adults aged 18-39, 7.3% have hypertension
 - Adults aged 40-59, 32.2%
 - Adults aged 60 or older, 64.9% have hypertension

- Knowing the age of a patient provides important information about the likelihood of hypertension
 - Age and hypertension status are not independent Can we back up this claim??
- While the probability of hypertension of a randomly chosen adult is 0.29...
 - The **conditional probability** of hypertension in a person known to be 60 or older is 0.649

Question: Is there an association between age group and hypertension?

From Lesson 4: Contingency tables

- We can start looking at the **contingency table** for hypertension for different age groups
 - Contingency table: type of data table that displays the frequency distribution of two or more categorical variables

Table: Contingency table showing hypertension status and age group, in thousands.

Age Group	Hypertension	No Hypertension	Total
18-39 yrs	8836	112206	121042
40-59 yrs	42109	88663	130772
60+ yrs	39917	21589	61506
Total	90862	222458	313320

Test of General Association + Hypotheses

• General research question: Are two variables (both categorical, nominal) associated with each other?

General wording for hypotheses

Test of "association" wording

- H_0 : There is no association between the two variables
- H_A : There is an association between the two variables

Test of "independence" wording

- H_0 : The variables are independent
- H_A : The variables are not independent

Hypotheses test for example

Test of "association" wording

- H_0 : There is no association between age and hypertension
- H_A : There is an association between age and hypertension

Test of "independence" wording

- H_0 : The variables age and hypertension are independent
- H_A : The variables age and hypertension are not independent

H_0 : Variables are Independent (under the null)

 \bullet Recall from Chapter 2, that events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

• If age and hypertension are independent variables, then theoretically this condition needs to hold for every combination of levels, i.e.

$$P(18-39\cap {
m hyp})=P(18-39)P({
m hyp}) \ P(18-39\cap {
m no \ hyp})=P(18-39)P({
m no \ hyp}) \ P(40-59\cap {
m hyp})=P(40-59)P({
m hyp}) \ P(40-59\cap {
m no \ hyp})=P(40-59)P({
m no \ hyp}) \ P(60+\cap {
m hyp})=P(60+)P({
m hyp}) \ P(60+\cap {
m no \ hyp})=P(60+)P({
m no \ hyp})$$

Age Group	Hypertension	No Hypertension	Total
18-39 yrs	8836	112206	121042
40-59 yrs	42109	88663	130772
60+ yrs	39917	21589	61506
Total	90862	222458	313320

$$P(18-39\cap \mathrm{hyp}) = rac{121042}{313320}\cdot rac{90862}{313320}$$

• • •

$$P(60+\cap ext{no hyp}) = rac{61506}{313320} \cdot rac{222458}{313320}$$

With these probabilities, for each cell of the table we calculate the \exp ected counts for each cell under the H_0 hypothesis that the variables are independent

Expected counts (if variables are independent)

- ullet The expected counts (if H_0 is true & the variables are independent) for each cell are
 - $np = \text{total table size} \cdot \text{probability of cell}$

$$= \operatorname{expected count} = \frac{\operatorname{column \ total} \cdot \operatorname{row \ total}}{\operatorname{table \ total}}$$

Expected count of 40-59 years old and hypertension:

$$ext{expected count} = rac{ ext{column total} \cdot ext{row total}}{ ext{table total}} \ = rac{90862 \cdot 130772}{313320} \ = 37923.55$$

Age Group	Hypertension	No Hypertension	Total
18-39 yrs	8836	112206	121042
40-59 yrs	42109	88663	130772
60+ yrs	39917	21589	61506
Total	90862	222458	313320

- If age group and hypertension are independent variables
 - (as assumed by H_0),
- then the observed counts should be close to the expected counts for each cell of the table

• Test to see how likely is it that we observe our data given the null hypothesis (no association)

Observed vs. Expected counts

• The **observed** counts are the counts in the 2-way table summarizing the data

Age Group	Hypertension	No Hypertension
18-39 yrs	8836	112206
40-59 yrs	42109	88663
60+ yrs	39917	21589

• The **expected** counts are the counts the we would expect to see in the 2-way table if there was no association between age group and hypertension

Age Group	Hypertension	No Hypertension
18-39 yrs	35101.87	85940.13
40-59 yrs	37923.55	92848.45
60+ yrs	17836.58	43669.42

Expected count for cell i, j:

$$\text{Expected Count}_{\text{row } i, \text{ col } j} = \frac{(\text{row } i \text{ total}) \cdot (\text{column } j \text{ total})}{\text{table total}}$$

Poll Everywhere Question 2

Using R for expected cell counts

- R calculates expected cell counts using the expected () function in the epitools package
- Make sure dataset is in matrix form using as . matrix()

```
hyp_data2
         Hypertension No Hypertension
18-39 yrs
                 8836
                              112206
40-59 yrs
                               88663
                42109
60+ yrs
                               21589
                39917
   library(epitools)
 2 expected(hyp data2)
         Hypertension No Hypertension
             35101.87
                            85940.13
18-39 yrs
40-59 yrs 37923.55
                            92848.45
60+ yrs 17836.58
                            43669.42
```

Learning Objectives

- 1. Understand the Chi-squared test and the expected cell counts under the null hypothesis distribution.
 - 2. Determine if two categorical variables are associated with one another using the Chi-squared test.

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the test statistic.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check assumptions

• Independence

- All individuals are independent from one another
 - In particular, observational units cannot be represented in more than one cell
 - For example, someone cannot be in two differnt age groups

• Sample size

- In order for the distribution of the test statistic to be appropriately modeled by a chi-squared distribution we need
- 2 × 2 table
 - expected counts are at least 10 for each cell
- Larger tables
 - No more than 20% of expected counts are less than 5
 - All expected counts are greater than 1

l expected(hyp_data2)

	Hypertension	No_Hypertension
18-39 yrs	35101.87	85940.13
40-59 yrs	37923.55	92848.45
60+ yrs	17836.58	43669.42

All expected counts > 5

Step 2 and 3: Significance level and Hypotheses

• Set $\alpha = 0.05$

Hypotheses test for example

Test of "association" wording

- H_0 : There is no association between age and hypertension
- H_A : There is an association between age and hypertension

Test of "independence" wording

- H_0 : The variables age and hypertension are independent
- H_A : The variables age and hypertension are not independent

Step 4: Calculate the χ^2 test statistic (1/2)

Test statistic for a test of association (independence):

$$\chi^2 = \sum_{
m all \ cells} rac{(
m observed - expected)^2}{
m expected}$$

• When the variables are independent, the observed and expected counts should be close to each other

Step 4: Calculate the χ^2 test statistic (2/2)

$$\chi^{2} = \sum \frac{(O - E)^{2}}{E}$$

$$= \frac{(8836 - 35101.87)^{2}}{35101.87} + \frac{(112206 - 85940.13)^{2}}{85940.13} + \frac{(21589 - 43669.42)^{2}}{43669.42}$$

$$= 66831$$

Is this value big? Big enough to reject H_0 ?

Observed:

Age Group	Hypertension	No Hypertension
18-39 yrs	8836	112206
40-59 yrs	42109	88663
60+ yrs	39917	21589

Expected:

Age Group	Hypertension	No Hypertension
18-39 yrs	35101.87	85940.13
40-59 yrs	37923.55	92848.45
60+ yrs	17836.58	43669.42

Poll Everywhere Question 2

Step 5: Calculate the *p*-value

The χ^2 distribution shape depends on its degrees of freedom

- It's skewed right for smaller df,
 - gets more symmetric for larger df
- df = (# rows-1) x (# columns-1)

• The p-value is always the area to the right of the test statistic for a χ^2 test

• We can use the pchisq function in R to calculate the probability of being at least as big as the χ^2 test statistic:

Step 4-5: Calculate the test statistic and p-value

 Data need to be in a matrix or table: use as.matrix() or table()

- Use matrix if data already in contingency table form
- Use table if data are two columns with each row for each observation (tidy version)
- Notice that age groups are rownames! Age does not have its own column
- Run chisq.test() in R

```
1 chisq.test(x = hyp_data2)
```

```
Pearson's Chi-squared test
```

```
data: hyp_data2
X-squared = 66831, df = 2, p-value < 2.2e-16</pre>
```

1 hyp_data2

```
Hypertension No_Hypertension
18-39 yrs 8836 112206
40-59 yrs 42109 88663
60+ yrs 39917 21589
```

Step 6: Conclusion

Recall the hypotheses to our χ^2 test:

- H_0 : There is **no association** between age and hypertension
- H_A : There is an association between age and hypertension

- Recall the p-value = 0.0402
- Use α = 0.05
- Do we reject or fail to reject H_0 ?

Conclusion statement:

 There is sufficient evidence that there is an association between age group and hypertension (pvalue < 0.0001`)

Warning!!

If we fail to reject, we DO NOT say variables are independent! We can say that we have insufficient evidence that there is an association.

Chi-squared test: Example all together

1. Check expected cell counts threshold

```
1 expected(hyp_data2)

Hypertension No_Hypertension
18-39 yrs 35101.87 85940.13
40-59 yrs 37923.55 92848.45
60+ yrs 17836.58 43669.42
```

All expected cells are greater than 5.

$$2. \alpha = 0.05$$

- 3. Hypothesis test:
 - H_0 : There is no association between age group and hypertension
 - H_1 : There is an association between age group and hypertension

4-5. Calculate the test statistic and p-value for Chisquared test in R

```
1 chisq.test(x = hyp_data2)

Pearson's Chi-squared test

data: hyp_data2
X-squared = 66831, df = 2, p-value < 2.2e-16</pre>
```

6. Conclusion

We reject the null hypothesis that age group and hypertension are not associated ($p < 2.2 \cdot 10^{-16}$). There is sufficient evidence that age group and hypertension are associated.