Lesson 16: Chi-squared test

TB sections 8.3-8.4

Meike Niederhausen and Nicky Wakim

Learning Objectives

- 1. Understand the Chi-squared test and the expected cell counts under the null hypothesis distribution.
- 2. Determine if two categorical variables are associated with one another using the Chi-squared test.

Where are we?

2 or more ind samples

Data	Probability	Sampling Variability, and Statistical	Inference fo	r continuous dat	:a/outcomes
Collecting data	Probability rules	Inference Sampling distributions	One sample t-test	3+ independent samples	Simple linear regression / correlation
Categorical vs. Numeric	Independence, conditional	Central Limit	2 sample tests: paired and independent	Power and sample size	Non-parametric tests
\vdash	Random variables and probability	Theorem	Inference fo	or categorical dat	a/outcomes
Summary statistics	distributions Linear combinations	Confidence Intervals	One proportion test	Fisher's exact test	Non-parametric tests
Data visualization	Binomial, Normal, and Poisson	Hypothesis tests	Chi-squared test	2 proportion test	Power and sample size
R Basics	Reproducibility	Quarto Pac	kages Data visualizatio	Data on wrangling	R Projects

Last time

- We looked at inference for a single proportion
- We looked at inference for a difference in two independent proportions $\longrightarrow P_1 P_2$
- If there are two groups, we could see if they had different proportions by testing if the difference between the proportions were the same (null) or different (alternative, two-sided, \neq)

- What happens when we want to compare two or more groups' proportions?
 - Can no longer rely on the difference in proportions
 - Need a new method to make inference (Chi-squared test!)

Learning Objectives

- 1. Understand the Chi-squared test and the expected cell counts under the null hypothesis distribution.
- 2. Determine if two categorical variables are associated with one another using the Chi-squared test.

From Lesson 4: Example: hypertension prevalence (1/2)

• US CDC estimated that between 2011 and 2014¹, 29% of the population in America had hypertension

- A health care practitioner seeing a new patient would expect a 29% chance that the patient might have hypertension
 - However, this is only the case if nothing else is known about the patient

From Lesson 4: Example: hypertension prevalence (2/2)

- Prevalence of hypertension varies significantly with age
 - Among adults aged 18-39, 7.3% have hypertension
 - Adults aged 40-59, 32.2%
 - Adults aged 60 or older, 64.9% have hypertension

- Knowing the age of a patient provides important information about the likelihood of hypertension
 - Age and hypertension status are not independent Can we back up this claim??
- While the probability of hypertension of a randomly chosen adult is 0.29...
 - The **conditional probability** of hypertension in a person known to be 60 or older is 0.649

Question: Is there an association between age group and hypertension?

From Lesson 4: Contingency tables

- We can start looking at the **contingency table** for hypertension for different age groups
 - Contingency table: type of data table that displays the frequency distribution of two or more categorical variables

Table: Contingency table showing hypertension status and age group, in thousands.

Age Group	Hypertension	No Hypertension	Total
18-39 yrs	8836	112206	121042
40-59 yrs	42109	88663	130772
60+ yrs	39917	21589	61506
Total	90862	222458	313320

$$\hat{p}_1 - \hat{p}_2 \qquad \hat{p}_3$$

Test of General Association + Hypotheses

> no inherent order

• General research question: Are two variables (both categorical, nominal) associated with each other?

not required

General wording for hypotheses

Test of "association" wording preferred

- H_0 : There is no association between the two variables
- H_A : There is an association between the two variables

Test of "independence" wording

- H_0 : The variables are independent
- H_A : The variables are not independent

Hypotheses test for example

Test of "association" wording

- H_0 : There is no association between age and hypertension
- H_A : There is an association between age and hypertension

Test of "independence" wording

- H_0 : The variables age and hypertension are independent
- H_A : The variables age and hypertension are not independent

H_0 : Variables are Independent (under the null) $\frac{1}{2}$ No Association!

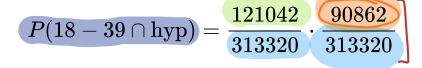
 Recall from Chapter 2, that events A and B are independent if and only if

$$P(\underline{A \cap B}) = P(\underline{A})P(\underline{B})$$

• If age and hypertension are independent variables, then theoretically this condition needs to hold for every combination of levels, i.e.

$$P(18 - 39 \cap \text{hyp}) = P(18 - 39)P(\text{hyp})$$
 $P(18 - 39 \cap \text{no hyp}) = P(18 - 39)P(\text{no hyp})$
 $P(40 - 59 \cap \text{hyp}) = P(40 - 59)P(\text{hyp})$
 $P(40 - 59 \cap \text{no hyp}) = P(40 - 59)P(\text{no hyp})$
 $P(60 + \cap \text{hyp}) = P(60 + P(\text{hyp}))$
 $P(60 + \cap \text{no hyp}) = P(60 + P(\text{no hyp}))$

Age Group	Hypertension	No Hypertension	Total	
18-39 yrs	→ 8836	112206	121042	
40-59 yrs	42109	88663	130772	4
60+ yrs	39917	21589	61506	
Total	90862	222458	313320	



$$P(60+\cap ext{no hyp}) = rac{61506}{313320} \cdot rac{222458}{313320}$$

With these probabilities, for each cell of the table we calculate the ${\bf expected}$ counts for each cell under the H_0 hypothesis that the variables are independent

Expected counts (if variables are independent)

42109 = Observed ct

- The expected counts (if H_0 is true & the variables are independent) for each cell are
 - $np = \text{total table size} \cdot \text{probability of cell}$
 - $\bullet \text{ expected count} = \frac{\text{column total} \cdot \text{row total}}{\text{table total}}$

Age Group	Нур	Hypertension		Hypertension	Total
18-39 yrs		8836		112206	121042
40-59 yrs		42109		88663	130772
60+ yrs		39917		21589	61506
Total		90862		222458	313320

Expected count of 40-59 years old and hypertension:

- If age group and hypertension are independent variables
 - (as assumed by H_0),
- then the observed counts should be close to the expected counts for each cell of the table
- Test to see how likely is it that we observe our data given the null hypothesis (no association)

Observed vs. Expected counts

• The **observed** counts are the counts in the 2-way table summarizing the data

Age Group	Hypertension	No Hypertension
18-39 yrs	8836	112206
40-59 yrs	42109	88663
60+ yrs	39917	21589

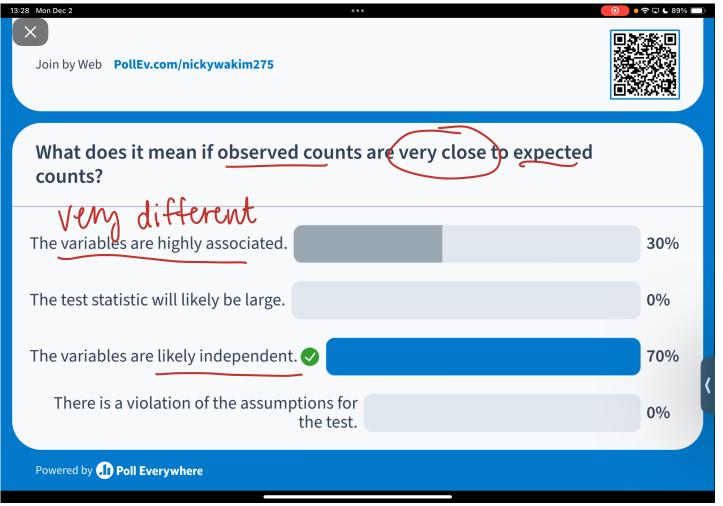
• The **expected** counts are the counts the we would expect to see in the 2-way table if there was no association between age group and hypertension

Age Group	Hypertension	No Hypertension
18-39 yrs	35101.87	85940.13
40-59 yrs	37923.55	92848.45
60+ yrs	17836.58	43669.42

Expected count for cell i, j:

$$\text{Expected Count}_{\text{row } i, \text{ col } j} = \frac{(\text{row } i \text{ total}) \cdot (\text{column } j \text{ total})}{\text{table total}}$$

Poll Everywhere Question 2



null NOT associated

reny close =

not enough

evidence that

they are not

associated

Using R for expected cell counts

- R calculates expected cell counts using the expected () function in the epitools package
- Make sure dataset is in matrix form using as matrix()

```
hyp data2
          Hypertension No_Hypertension
18-39 yrs
                  8836
                                112206
40-59 yrs
                 42109
                                 88663
60+ yrs
                 39917
                                 21589
    library(epitools)
 2 expected(hyp_data2)
          Hypertension No Hypertension
18-39 yrs
              35101.87
                              85940.13
40-59 yrs
              37923.55
                              92848.45
              17836.58
                              43669.42
60+ yrs
```

Learning Objectives

- 1. Understand the Chi-squared test and the expected cell counts under the null hypothesis distribution.
- 2. Determine if two categorical variables are associated with one another using the Chi-squared test.

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one brtwo sided? NO Option!
- 4. Calculate the test statistic.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check assumptions

- Independence
 - All individuals are independent from one another & independent from groups
 - o In particular, observational units cannot be represented in more than one cell
 - For example, someone cannot be in two differnt age groups
- Sample size
 - In order for the distribution of the test statistic to be appropriately modeled by a chi-squared distribution we need
 - 2 × 2 table
 - expected counts are at least 10 for each cell
 - Larger tables

- No more than 20% of expected counts are less than 5
- All expected counts are greater than 1

```
rows x col
```

1 expected(hyp_data2)

All expected counts > 5

Step 2 and 3: Significance level and Hypotheses

• Set $\alpha = 0.05$

Hypotheses test for example

Test of "association" wording

- H_0 : There is no association between age and hypertension
- H_A : There is an association between age and hypertension

Test of "independence" wording

- H_0 : The variables age and hypertension are independent
- H_A : The variables age and hypertension are not independent

Step 4: Calculate the χ^2 test statistic (1/2)

Test statistic for a test of association (independence):

$$\chi^2 = \sum_{
m all \ cells} rac{
m (observed - expected)}{
m expected}.$$

• When the variables are independent, the observed and expected counts should be close to each other

Step 4: Calculate the χ^2 test statistic (2/2)

$$\chi^{2} = \sum \frac{(O - E)^{2}}{E}$$

$$= \frac{(8836 - 35101.87)^{2}}{35101.87} + \frac{(112206 - 85940.13)^{2}}{85940.13} + \frac{(21589 - 43669.42)^{2}}{43669.42}$$

Is this value big? Big enough to reject H_0 ?

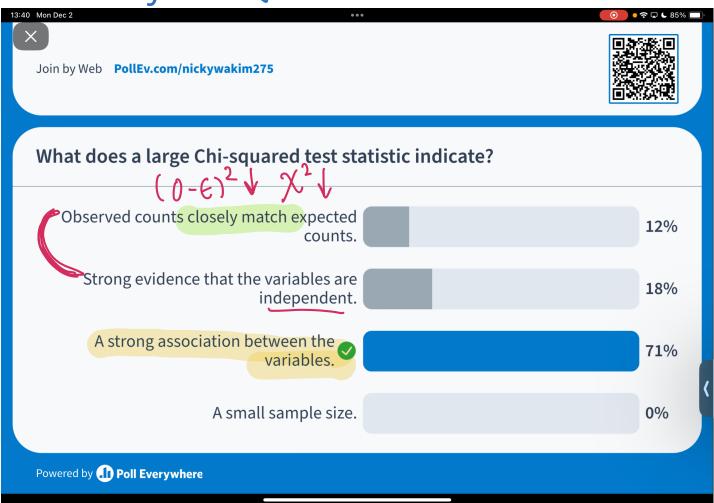
Observed:

Age Group	Hypertension	No Hypertension
18-39 yrs	8836	112206
40-59 yrs	42109	88663
60+ yrs	39917	21589

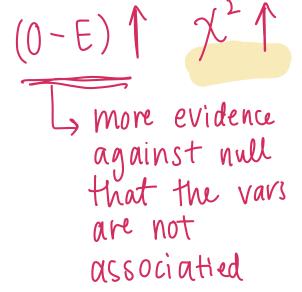
Expected:

Age Group	Hypertension	No Hypertension
18-39 yrs	35101.87	85940.13
40-59 yrs	37923.55	92848.45
60+ yrs	17836.58	43669.42

Poll Everywhere Question 2



$$\chi^2 = \sum_{\text{all}} \frac{(0 - \epsilon)}{\epsilon}$$



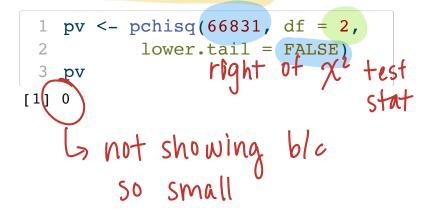
Step 5: Calculate the *p*-value

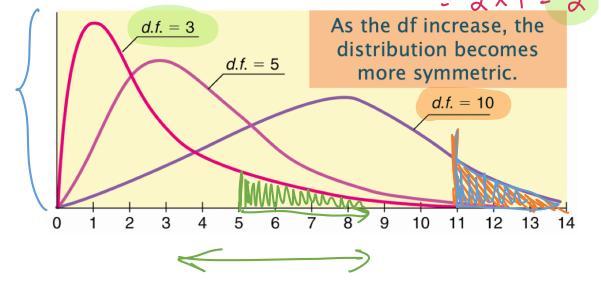
The χ^2 distribution shape depends on its degrees of freedom

- It's skewed right for smaller df,
 - gets more symmetric for larger df
- df = (# rows-1) x (# columns-1)

• The p-value is always the area to the right 3×2 Cont. table of the test statistic for a χ^2 test

> We can use the pchisq function in R to calculate the probability of being at least as big as the χ^2 test statistic:





Step 4-5: Calculate the test statistic and p-value

 Data need to be in a matrix or table: use as matrix() or table()

- Use matrix if data already in contingency table form 40-59 yrs
- Use table if data are two columns with each row for each observation (tidy version)
- Notice that age groups are rownames! Age does not have its own column
- Run chisq test() in R

```
1 chisq.test(x = hyp_data2)
```

Pearson's Chi-squared test

```
data: hyp_data2
X-squared = 66831, df = 2, p-value < 2.2e-16
```

Step 6: Conclusion

Recall the hypotheses to our χ^2 test:

- H_0 : There is **no association** between age and hypertension
- H_A : There is an association between age and hypertension

- Recall the p-value = 0.0402
- Use α = 0.05
- Do we reject or fail to reject H_0 ?

Conclusion statement:

 There is sufficient evidence that there is an association between age group and hypertension (pvalue < 0.0001`)

Warning!!

If we fail to reject, we DO NOT say variables are independent! We can say that we have insufficient evidence that there is an association.

not immediately "accepting" the null

Chi-squared test: Example all together

1. Check expected cell counts threshold

1 expected(hyp_data2) Hypertension No_Hypertension 18-39 yrs 35101.87 85940.13 40-59 yrs 37923.55 92848.45 60+ yrs 17836.58 43669.42

All expected cells are greater than 5.

$$2. \alpha = 0.05$$

3. Hypothesis test:

- H_0 : There is no association between age group and hypertension
- H_1 : There is an association between age group and hypertension

4-5. Calculate the test statistic and p-value for Chisquared test in R

```
1 chisq.test(x = hyp_data2)

Pearson's Chi-squared test

data: hyp_data2
X-squared = 66831, df = 2, p-value < 2.2e-16</pre>
```

6. Conclusion

We reject the null hypothesis that age group and hypertension are not associated ($p < 2.2 \cdot 10^{-16}$). There is sufficient evidence that age group and hypertension are associated.