Lesson 17: Comparing Means with ANOVA

TB sections 5.5

Meike Niederhausen and Nicky Wakim 2024-10-02

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

Where are we?

Sampling Variability, **Probability** Data Inference for continuous data/outcomes and Statistical Inference Simple linear 3+ independent One sample **Probability** Collecting regression / t-test samples data rules Sampling correlation distributions 2 sample tests: Independence, Non-parametric Power and conditional paired and Categorical tests sample size Central independent vs. Numeric Limit Random Theorem variables and Inference for categorical data/outcomes probability distributions **Summary** Confidence Fisher's exact One proportion Non-parametric statistics Intervals Linear test tests test combinations Data Binomial, Hypothesis Power and Chi-squared 2 proportion visualization Normal, and tests sample size test test Poisson Data Data R Packages R Projects **Basics** Reproducibility Quarto • • • visualization wrangling

A little while ago...

- We looked at inference for a single mean
- We looked at inference for a difference in means from two independent samples

• If there are two groups, we could see if they had different means by testing if the difference between the means were the same (null) or different (alternative)

- What happens when we want to compare two or more groups' means?
 - Can no longer rely on the difference in means
 - Need a new method to make inference (ANOVA or Linear Regression!)

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

From Lesson 8: Data visualization

• Study investigating whether ACTN3 genotype at a particular location (residue 577) is associated with change in muscle function

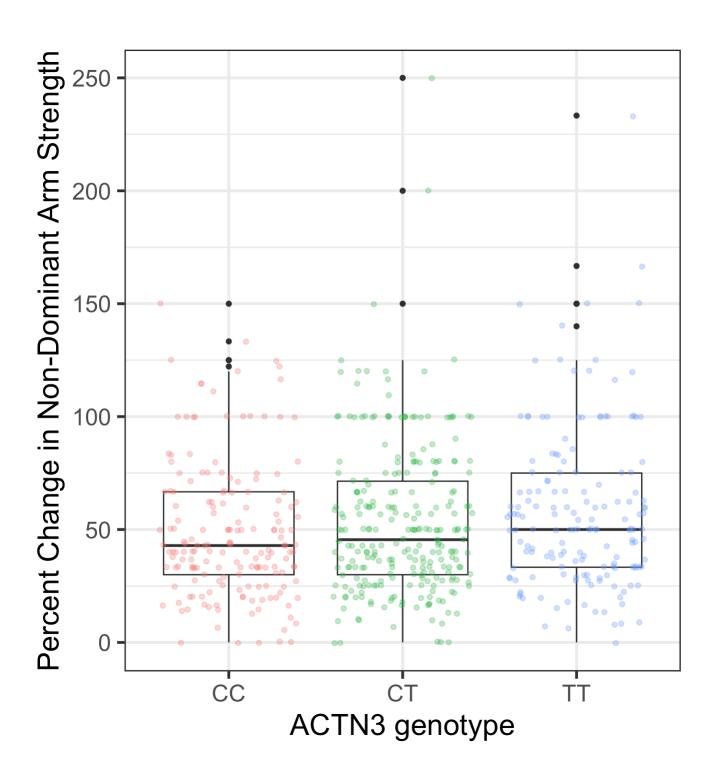
• Categorical variable: genotypes (CC, TT, CT)

• Numeric variable: Muscle function, measured as percent change in non-dominant arm strength

We can start the investigation by plotting the relationship

From Lesson 8: Side-by-side boxplots with data points

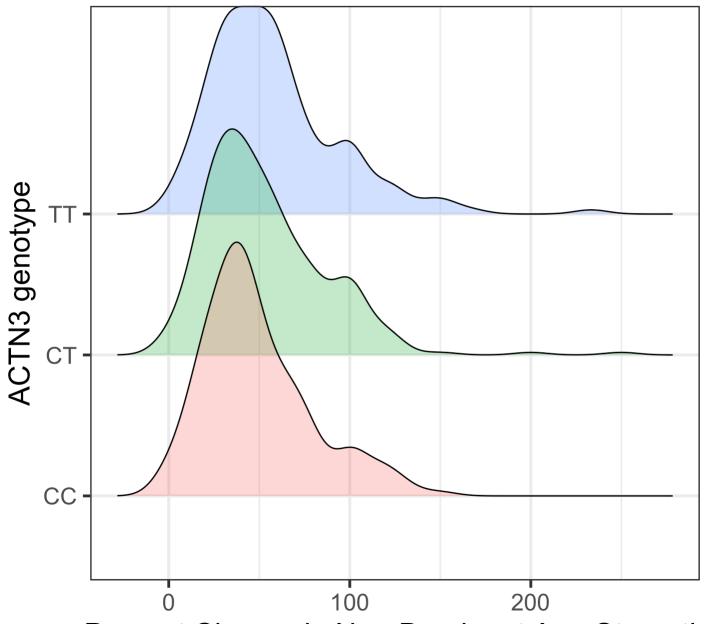
• We can look at the boxplot of percent change for each genotype with points shown so we can see the distribution of observations better



From Lesson 8: Ridgeline plot

- Overlapped densities were easy enough to see with 3 genotypes
- If you have many categories, a ridgeline plot might make it easier to see

Strength change by genotype



Percent Change in Non-Dominant Arm Strength

Poll Everywhere Question 1

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
 - 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

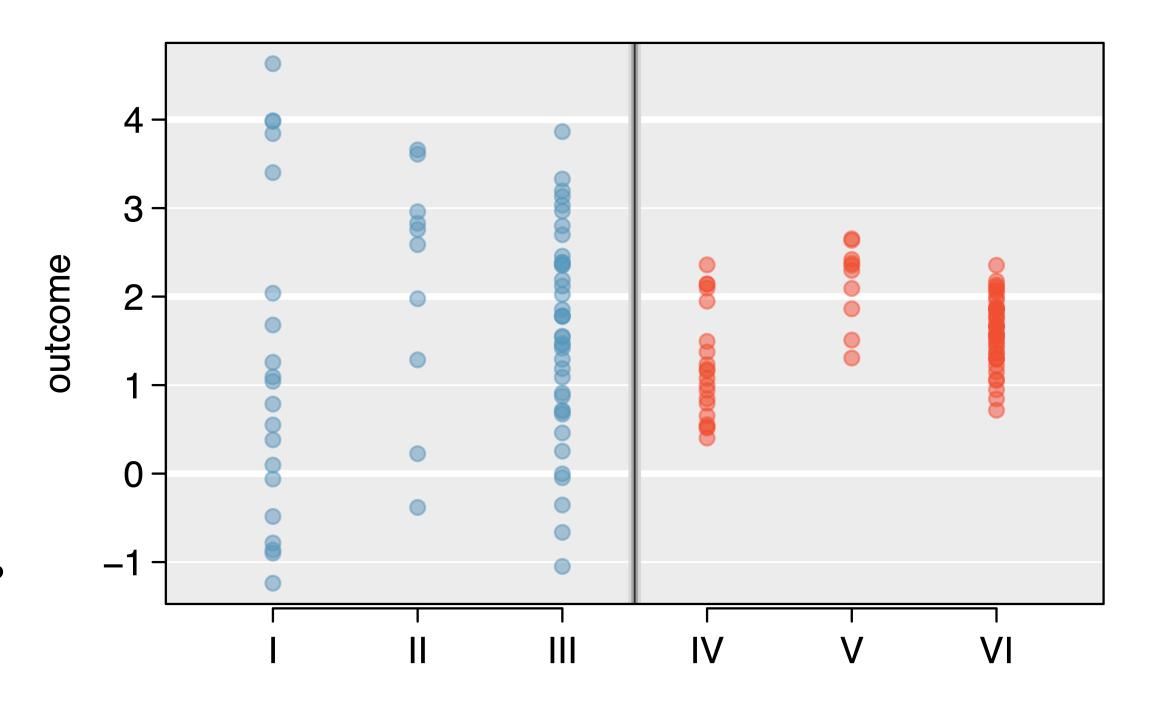
Comparing means

Whether or not two means are significantly different depends on:

- How far apart the **means** are
- How much variability there is within each group

Questions:

- How to measure variability between groups?
- How to measure variability within groups?
- How to compare the two measures of variability?
- How to determine significance?



Generic ANOVA table

The "mean square" is the sum of squares divided by the degrees of freedom

			<u></u>		
Source	df	Sum of	Mean	F-Statistic	
Source		Squares	Square	r-statistic	
Groups	<i>k</i> -1	SSG	MSG =	<u>MSG</u>	
Groups			SSG/(<i>k</i> -1)	MSE	
Error	N-k	SSE	MSE =		
			SSE/(N-k)		
Total	<i>N</i> -1	SST	average		
		variability	variability		

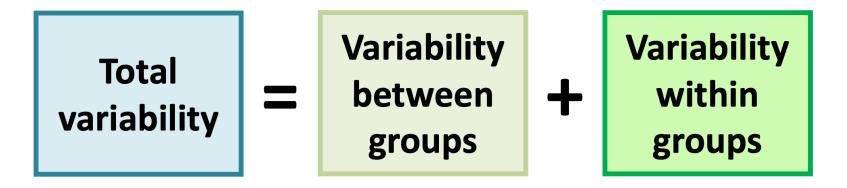
The *F-statistic* is a ratio of

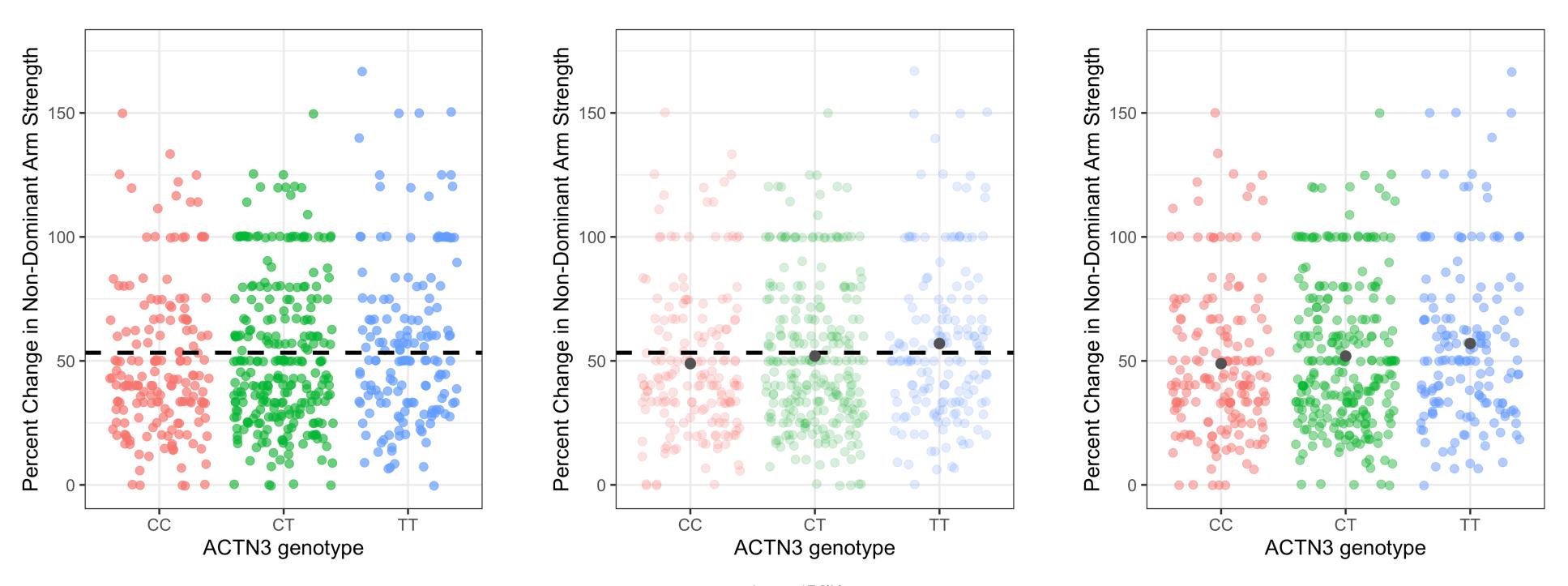
the average variability between groups

to the average variability *within* groups

ANOVA: Analysis of Variance

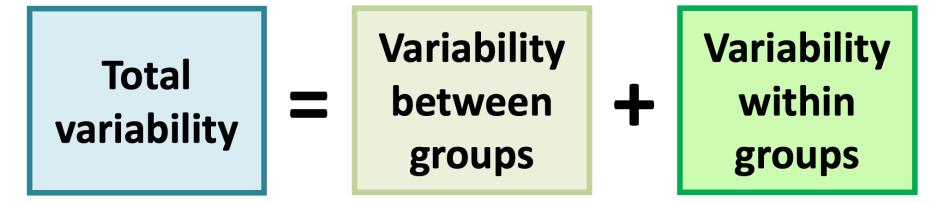
ANOVA compares the variability between groups to the variability within groups



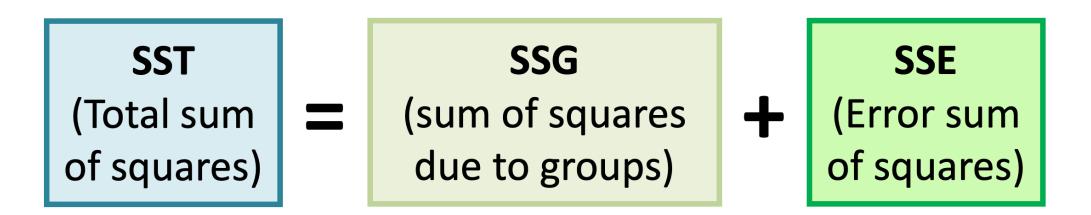


ANOVA: Analysis of Variance

Analysis of Variance (ANOVA) compares the variability between groups to the variability within groups



$$\sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - ar{x})^2 \; = \; \sum_{i=1}^k n_i (ar{x}_i - ar{x})^2 \; + \; \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - ar{x}_i)^2 \; .$$



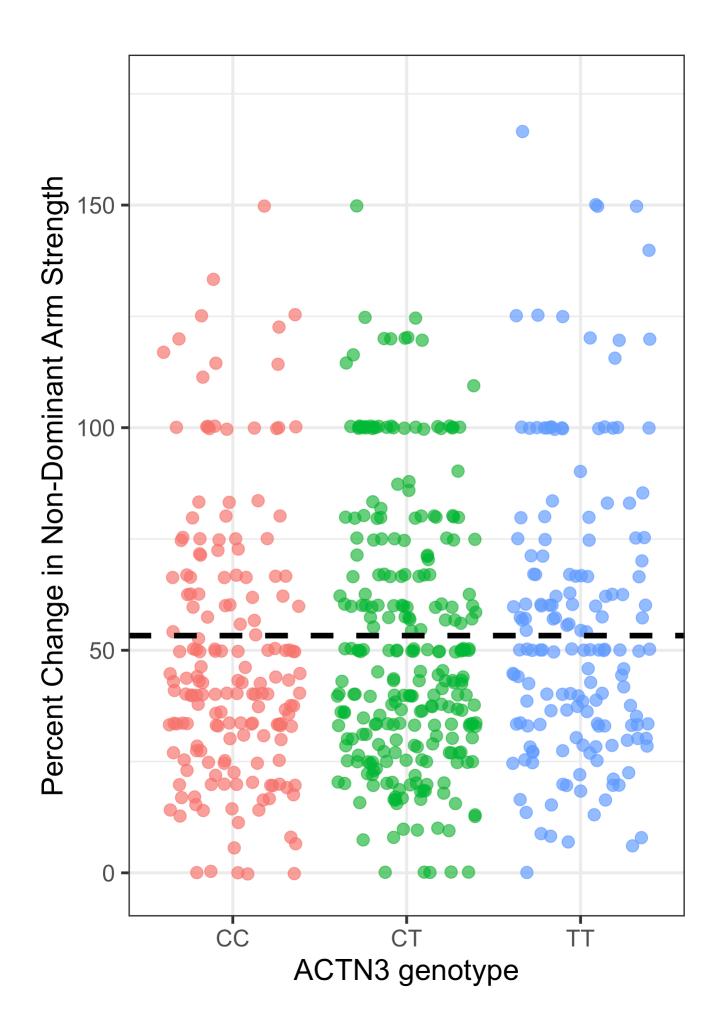
Notation

•	k	gr	Όι	ıps
---	---	----	----	-----

- n_i observations in each of the k groups
- $oldsymbol{\cdot}$ Total sample size is $N = \sum_{i=1}^k n_i$
- \bar{x}_i = mean of observations in group i
- \bar{x} = mean of *all* observations
- s_i = sd of observations in group i
- s = sd of all observations

Observation	i = 1	i = 2	i = 3	• • •	i = k	overall
j = 1	x_{11}	x_{21}	x_{31}	• • •	x_{k1}	
j = 2	x_{12}	x_{22}	x_{32}	• • •	x_{k2}	
j = 3	x_{13}	x_{23}	x_{33}	• • •	x_{k3}	
j = 4	x_{14}	x_{24}	x_{34}	• • •	x_{k4}	
• •	•	• •	•	•	•	
$j = n_i$	x_{1n_1}	x_{2n_2}	x_{3n_3}	• • •	x_{kn_k}	
Means	$ar{x}_1$	$ar{x}_2$	$ar{x}_3$	• • •	$ar{x}_k$	$ar{ar{x}}$
Variance	s_1^2	s_2^2	s_3^2	• • •	s_k^2	s^2

Total Sums of Squares (SST)

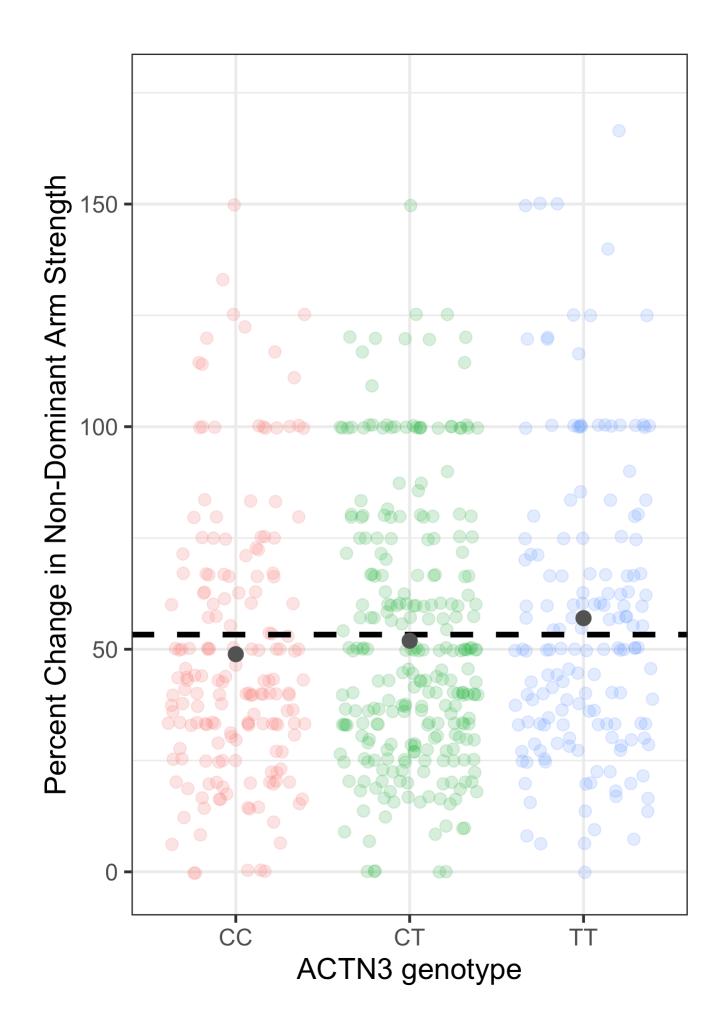


Total Sums of Squares:

$$SST = \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - ar{x})^2 = (N-1)s^2$$

- where
 - $lacksquare N = \sum_{i=1}^k n_i$ is the total sample size and
 - ullet s^2 is the grand standard deviation of all the observations
- This is the sum of the squared differences between each observed x_{ij} value and the grand mean, \bar{x} .
- That is, it is the total deviation of the x_{ij} 's from the grand mean.

Sums of Squares due to Groups (SSG)

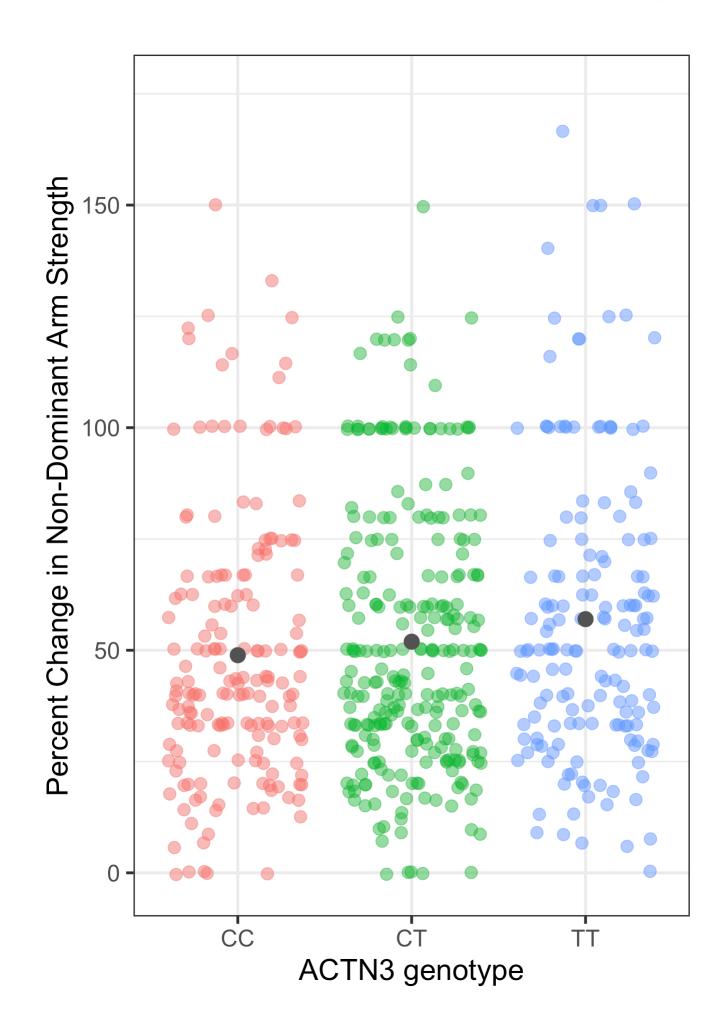


Sums of Squares due to Groups:

$$SSG = \sum_{i=1}^k n_i (ar{x}_i - ar{x})^2$$

- This is the sum of the squared differences between each group mean, \bar{x}_i , and the grand mean, \bar{x} .
- That is, it is the deviation of the group means from the grand mean.
- ullet Also called the Model SS, or SS_{model} .

Sums of Squares Error (SSE)



Sums of Squares Error:

$$SSE = \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - ar{x}_i)^2 = \sum_{i=1}^k (n_i - 1) s_i^2$$

where s_i is the standard deviation of the i^{th} group

- This is the sum of the squared differences between each observed x_{ij} value and its group mean \bar{x}_i .
- That is, it is the deviation of the x_{ij} 's from the predicted ndrm.ch by group.
- Also called the residual sums of squares, or $SS_{residual}$.

Poll Everywhere Question 2

ANOVA table to hypothesis test?

- Okay, so how do we use all these types of variability to run a test?
- How do we determine, statistically, if the groups have different means or not?

The "mean square" is the sum of squares divided by the degrees of freedom

			V			
Source	df	Sum of	Mean	F-Statistic	The <i>F-statistic</i> is	
		Squares	Square	r-Statistic	a ratio of	
Crounc	<i>k</i> -1	SSG	MSG =	MSG	the average	
Groups			SSG/(k-1)	MSE	variability <i>between</i> groups	
Error	N-k	SSE	MSE =			
Error	IV-K		SSE/(N-k)		to the average variability <i>within</i>	
Total	N-1	SST	average	_	groups	
		variability	variability			

• Answer: We use the F-statistic in a hypothesis test!

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
 - 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

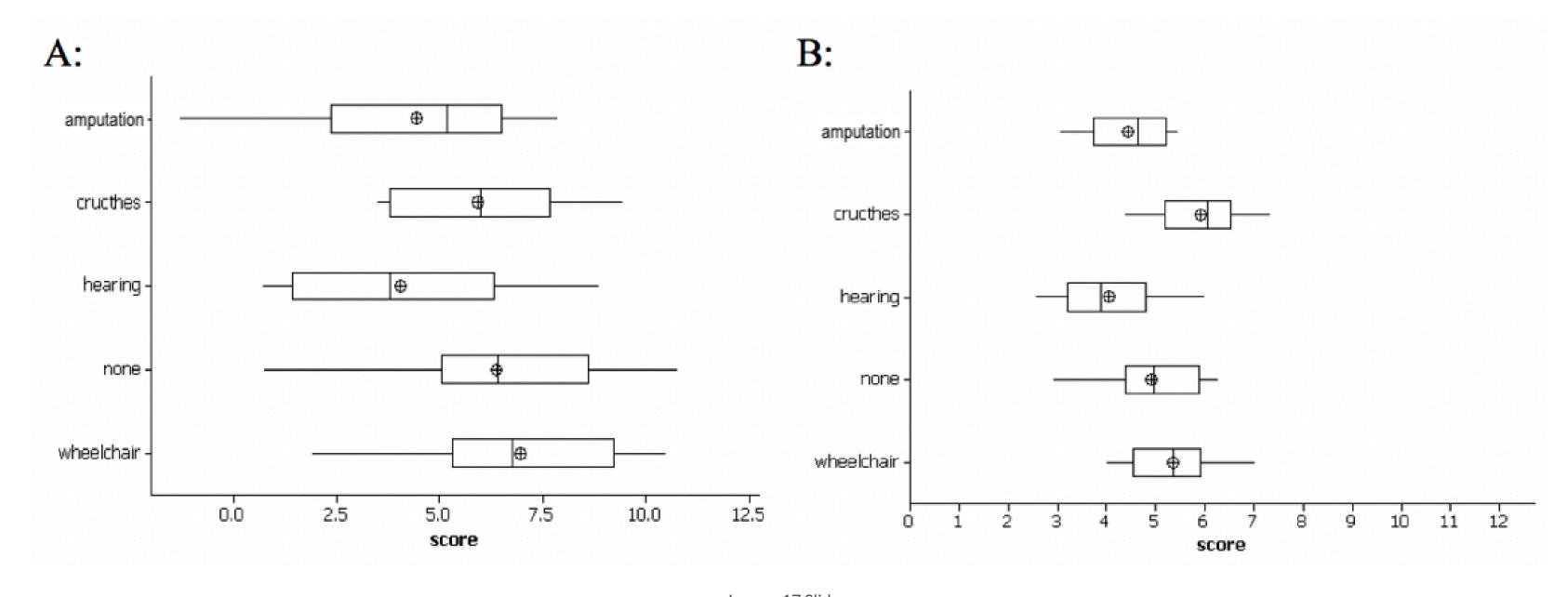
Thinking about the F-statistic

If the groups are actually different, then which of these is more accurate?

- 1. The variability between groups should be higher than the variability within groups
- 2. The variability within groups should be higher than the variability between groups

If there really is a difference between the groups, we would expect the F-statistic to be which of these:

- 1. Higher than we would observe by random chance
- 2. Lower than we would observe by random chance



The F-statistic

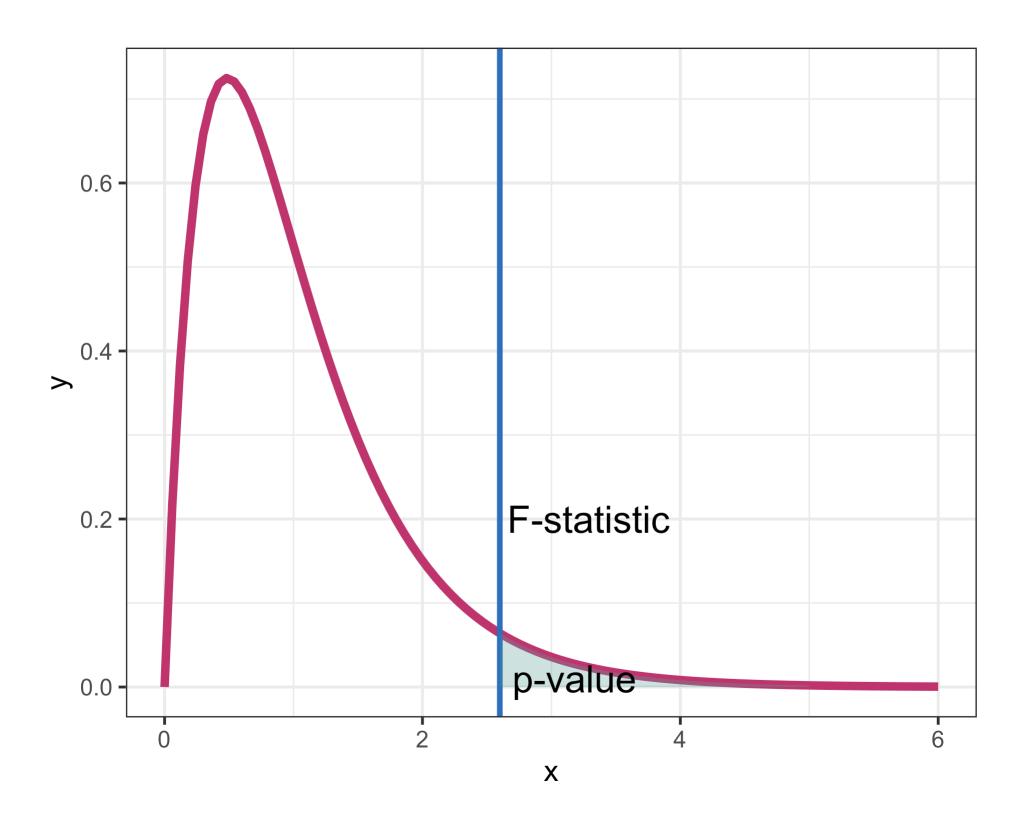
• F-statistic represents the standardized ratio of variability between groups to the variability within the groups

$$F_{stat} = rac{MSG}{MSE}$$

• F is larger when the variability between groups is larger than variability within groups

The F-distribution

- The F-distribution is skewed right
- The F-distribution has two different degrees of freedom:
 - one for the numerator of the ratio (k 1) and
 - one for the denominator (N k)
- *p*-value
 - $lacksquare P(F>F_{stat})$
 - is always the upper tail
 - (the area as extreme or more extreme)



Poll Everywhere Question 3

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.

4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the test statistic.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check assumptions

The sampling distribution is an **F-distribution**, if...

- Sample sizes in each group group are large (each $n \geq 30$)
 - OR the data are relatively normally distributed in each group
- Variability is "similar" in all group groups:
 - Is the within group variability about the same for each group?
 - As a rough rule of thumb, this condition is violated if the standard deviation of one group is more than double the standard deviation of another group

Step 1: Check assumptions

• Use R to check both assumptions in our example

• Counts in each group are greater than 30!

```
1 max(genotype_groups$SD) / min(genotype_groups$SD)
[1] 1.191455
```

• Variability in one group vs. another is no more than 1.2 times!

Step 3: Specify Hypotheses

General hypotheses

To test for a difference in means across *k* groups:

$$H_0: \mu_1=\mu_2=\ldots=\mu_k$$

vs. H_A : At least one pair $\mu_i \neq \mu_j$ for $i \neq j$

Hypotheses test for example

$$H_0: \mu_{CC}=\mu_{CT}=\mu_{TT}$$

vs.
$$H_A$$
: At least one pair $\mu_i \neq \mu_j$ for $i \neq j$

Step 4-5: Find the test statistic and p-value

- Our test statistic is an F-statistic
 - F-statistic: measurement of the ratio of variability between groups to variability within groups

- Our F-statistic follows an F-distribution
 - Which is why we cannot use something like the Z-distribution nor T-distribution

• So we'll need to find the F-statistic and its corresponding p-value using an F-distribution

Step 4-5: Find the test statistic and p-value

- There are several options to run an ANOVA model (aka calculate F-statistic and p-value)
- Two most common are lm and aov
 - lm = linear model; will be using frequently in BSTA 512

Step 6: Conclusion

 $H_0: \mu_{CC}=\mu_{CT}=\mu_{TT}$

vs. H_A : At least one pair $\mu_i
eq \mu_j$ for $i \neq j$

- Recall the p-value = 0.0402
- Use α = 0.05
- Do we reject or fail to reject H_0 ?

Conclusion statement:

• There is sufficient evidence that at least one of the genotype groups has a change in arm strength statistically different from the other groups. (p-value =0.0402)

Final note

- Recall, visually the three looked pretty close
- This is the case that I would also do some work to report the means and standard deviations of each genotype's percent change in non-dominant arm strength.

```
# A tibble: 3 × 4

actn3.r577x count mean SD

<fct> <int> <dbl> <dbl> <dbl> 1 CC

173 48.9 30.0

2 CT

261 53.2 33.2

3 TT

161 58.1 35.7
```

Revised conclusion statement:

• For people with CC genotype then mean percent change in arm non-dominant arm strength was 48.9% (SD = 30%). For CT, mean percent change was 53.2% (SD = 33.2%). For TT, mean percent change was 58.1% (SD = 35.7%). There is sufficient evidence that at least one of the genotype groups has a change in arm strength statistically different from the other groups. (p-value = 0.0402)