Lesson 17: Comparing Means with ANOVA

TB sections 5.5

Meike Niederhausen and Nicky Wakim

2024-**WWW**

12-2

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table. $\sqrt{}$
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

Where are we?

Data	Probability	Sampling Variability, and Statistical	Inference for continuous data/outcomes			
Collecting data Probability rules Sampling distributions		One sample t-test	3+ independent samples	Simple linear regression / correlation		
Categorical vs. Numeric	Independence, conditional	Central Limit	2 sample tests: paired and independent	Power and sample size	Non-parametrio	
	Random variables and probability distributions	Theorem	Inference for categorical data/outcomes			
Summary statistics	Linear combinations	Confidence Intervals	One proportion test	Fisher's exact test	Non-parametri tests	
Data visualization	Binomial, Normal, and Poisson		Chi-squared test	2 proportion test	Power and sample size	
Basics	Reproducibility	Quarto Pa	ckages Data visualizati	Data on wrangling	R Projects	

A little while ago...

- We looked at inference for a single mean
- We looked at inference for a difference in means from two independent samples

$$\hat{\mu}_1 - \hat{\mu}_2$$

• If there are two groups, we could see if they had different means by testing if the difference between the means were the same (null) or different (alternative)

- What happens when we want to compare two or more groups' means?
 - Can no longer rely on the difference in means
 - Need a new method to make inference (ANOVA or Linear Regression!)

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

From Lesson 8: Data visualization

• Study investigating whether ACTN3 genotype at a particular location (residue 577) is associated with change in muscle function

• Categorical variable: genotypes (CC, TT, CT)

• Numeric variable: Muscle function, measured as percent change in non-dominant arm strength

• We can start the investigation by plotting the relationship

From Lesson 8: Side-by-side boxplots with data points

• We can look at the boxplot of percent change for each genotype with points shown so we can see the distribution of observations better

From Lesson 8: Ridgeline plot

- Overlapped densities were easy enough to see with 3 genotypes
- If you have many categories, a ridgeline plot might make it easier to see

Poll Everywhere Question 1

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
 - 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

Comparing means

Whether or not two means are significantly different depends on:

- How far apart the means are
- How much variability there is within each group

Questions:

- How to measure variability between groups? how far apart are mean?
- How to measure variability within groups?
- How to compare the two measures of variability?
- How to determine significance?

Generic ANOVA table

The "mean square" is the sum of squares divided by the degrees of freedom

variability

Jarability

	Source	df	Sum of	Mean	F-Statistic	
	Jource		Squares	Square		
4	Groups	<i>k</i> -1	SSG	MSG =	MSG	
	Groups	V-T		SSG/(<i>k</i> -1)	MSE	
	Error -	N-k	SSE	MSE =		
	LITOI			SSE/(N-k)		
	Total	<i>N</i> -1	SST	↑ average		
			A	- 0 -		

variability

The *F-statistic* is a ratio of

the average variability between groups

to the average variability *within* groups

ANOVA: Analysis of Variance

* now far means are from each other

ANOVA compares the variability between groups to the variability within groups

ANOVA: Analysis of Variance

Analysis of Variance (ANOVA) compares the variability between groups to the variability within groups

Notation

- *k* groups
- n_i observations in each of the k groups
- ullet Total sample size is $N = \sum_{i=1}^k n_i$
- \bar{x}_i = mean of observations in group i
- \bar{x} = mean of *all* observations
- s_i = sd of observations in group i
- s = sd of all observations

0	4	p S
U		

Observation	i = 1	i = 2	i = 3		i = k	overall
j = 1	x_{11}	x_{21}	x_{31}		x_{k1}	
j = 2	x_{12}	x_{22}	x_{32}	• • •	x_{k2}	
j = 3	x_{13}	x_{23}	x_{33}	• • •	x_{k3}	
j = 4	x_{14}	x_{24}	x_{34}	• • •	x_{k4}	
:	:	:	:	٠.	:	
j = n _i	x_{1n_1}	x_{2n_2}	x_{3n_3}		x_{kn_k}	
Means	$ar{ar{x}}_1$	$ar{ar{x}_2}$	$ar{x}_3$		$ar{x}_k$	$ar{ar{x}}$
Variance	s_1^2	s_2^2	s_3^2	• • •	s_k^2	s^2

Total Sums of Squares (SST)

Total Sums of Squares:

$$SST = \sum_{i=1}^k \sum_{j=1}^{n_i} (\underbrace{x_{ij} - ar{x}})^2 = (N-1)s^2$$

- where
 - $lacksquare N = \sum_{i=1}^k n_i$ is the total sample size and
 - ullet s^2 is the grand standard deviation of all the observations
- This is the sum of the squared differences between each observed x_{ij} value and the grand mean, \bar{x} .
- That is, it is the total deviation of the x_{ij} 's from the grand mean.

Sums of Squares due to Groups (SSG)

Sums of Squares due to Groups:

$$SSG = \sum_{i=1}^k n_i (ar{ar{x}}_i - ar{ar{x}})^2$$

- This is the sum of the squared differences between each group mean, \bar{x}_i , and the grand mean, \bar{x} .
- That is, it is the deviation of the group means from the grand mean.
- Also called the Model SS, or SS_{model} .

Sums of Squares Error (SSE)

Sums of Squares Error:

$$SSE = \sum_{i=1}^k \sum_{i=1}^{n_i} (m{x}_{ij} - ar{m{x}}_i)^2 = \sum_{i=1}^k (n_i - 1) s_i^2.$$

where s_i is the standard deviation of the i^{th} group

- This is the sum of the squared differences between each observed x_{ij} value and its group mean \bar{x}_i .
- ullet That is, it is the deviation of the x_{ij} 's from the predicted ndrm.ch by group.
- Also called the residual sums of squares, or $SS_{residual}$.

Poll Everywhere Question 2

ANOVA table to hypothesis test?

- Okay, so how do we use all these types of variability to run a test?
- How do we determine, statistically, if the groups have different means or not?

• Answer: We use the F-statistic in a hypothesis test! Standardize Y

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
 - 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
- 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

Thinking about the F-statistic

If the groups are actually different, then which of these is more accurate?

- 1. The variability between groups should be higher than the variability within groups
- 2. The variability within groups should be higher than the variability between groups

A:

cructhes

hearing

none

wheelchair

0.0 2.5 5.0 7.5 10.0 12.5

If there really is a difference between the groups, we would expect the F-statistic to be which of these:

 V_0

1. Higher than we would observe by random chance
2. Lewer than we would observe by random chance

The F-statistic

• F-statistic represents the standardized ratio of variability between groups to the variability within the groups

$$F_{stat} = rac{MSG}{MSE}$$
 –

• F is larger when the variability between groups is larger than variability within groups

The F-distribution

- The F-distribution is skewed right
- The F-distribution has two different degrees of freedom:
 - one for the <u>numerator</u> of the ratio (<u>k</u> 1) and
 - one for the denominator (N k)
- *p*-value
 - $lacksquare P(F>F_{stat})$

- total # grps
- is always the upper tail
- (the area as extreme or more extreme)

Poll Everywhere Question 3

Learning Objectives

- 1. Revisit data visualization for a numeric outcome and categorical variable (from Lesson 8).
- 2. Understand the different measures of variability within an Analysis of Variance (ANOVA) table.
- 3. Understand the F-statistic and F-distribution that is used to measure the ratio of between group and within group variability.
 - 4. Determine if groups of means are different from one another using a hypothesis test and F-distribution.

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the **test statistic**.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check assumptions

The sampling distribution is an **F-distribution**, if...

- ullet Sample sizes in each group group are large (each $n\geq 30$) $\sqrt{}$
 - OR the data are relatively normally distributed in each group
- Variability is "similar" in all group groups:
 - Is the within group variability about the same for each group?
 - As a rough rule of thumb, this condition is violated if the standard deviation of one group is more than double the standard deviation of another group

Step 1: Check assumptions

• Use R to check both assumptions in our example

```
genotype groups <- famuss %>%
      group by(actn3.r577x) %>%
      summarise(count = n(),
                 SD = sd(ndrm.ch)
    genotype groups
# A tibble: 3 \times 3
  actn3.r577x count
             <int> <dbl>
 <fct>
1 CC
• Counts in each group are greater than 30!
    max(genotype groups$SD)
                                ( min(genotype groups$SD)
   1.191455
```

• Variability in one group vs. another is no more than 1.2 times!

Step 3: Specify Hypotheses

General hypotheses

To test for a difference in means across *k* groups:

$$H_0: \mu_1=\mu_2=\ldots=\mu_k$$

 $\text{vs. } H_A: \overline{\text{At least one pair } \mu_i \neq \mu_j \text{ for } i \neq j \\$

$$\mu_1 = \mu_2 = \mu_3 \text{ but}$$

$$\mu_3 \ge \mu$$

Hypotheses test for example

$$H_0:\mu_{CC}=\mu_{CT}=\mu_{TT}$$

 $ext{vs. } H_A: \overline{ ext{At least one pair } \mu_i
eq \mu_j ext{ for } i
eq j$

$$\frac{1}{2} \int_{\mathbb{R}^{n}} \mu_{cc} \neq \mu_{cT} = 0R$$

Step 4-5: Find the test statistic and p-value

- Our test statistic is an F-statistic
 - F-statistic: measurement of the ratio of variability between groups to variability within groups

- Our F-statistic follows an F-distribution
 - Which is why we cannot use something like the Z-distribution nor T-distribution

• So we'll need to find the F-statistic and its corresponding p-value using an F-distribution

Step 4-5: Find the test statistic and p-value

- There are several options to run an ANOVA model (aka calculate F-statistic and p-value)
- Two most common are lm and aov

Im = linear model; will be using frequently in BSTA 512

```
1 lm ndrm.ch ~ actn3.r577x,
2 data = famuss) %>% anova()

Analysis of Variance Table

Response: ndrm.ch

Df Sum Sq Mean Sq F value Pr(>F)
actn3.r577x 2 7043 3521.6 3.2308 0.04022

Residuals 592 645293 1090.0

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1
```

Step 6: Conclusion

$$H_0: \mu_{CC} = \mu_{CT} = \mu_{TT}$$

vs. $H_A: ext{At least one pair} \mu_i
eq \mu_j ext{ for } i
eq j$

- Recall the p-value = 0.0402
- Use α = 0.05
- Do we reject or fail to reject H_0 ?

Conclusion statement:

• There is sufficient evidence that at least one of the genotype groups has a change in arm strength statistically different from the other groups. (p-value =0.0402)

Final note

- Recall, visually the three looked pretty close
- This is the case that I would also do some work to report the means and standard deviations of each genotype's percent change in non-dominant arm strength.

```
famuss %>%
      group by(actn3.r577x) %>%
      summarise(count = n(),
                 mean = mean(ndrm.ch),
 5
                 SD = sd(ndrm.ch)
# A tibble: 3 \times 4
  actn3.r577x count
                            SD
                    mean
  <fct>
             <int> <dbl> <dbl>
               173 48.9 30.0
1 CC
               261 53.2 33.2
2 CT
                    58.1 35.7
3 TT
                161
```

Revised conclusion statement:

• For people with CC genotype then mean percent change in arm non-dominant arm strength was 48.9% (SD = 30%). For CT, mean percent change was 53.2% (SD = 33.2%). For TT, mean percent change was 58.1% (SD = 35.7%). There is sufficient evidence that at least one of the genotype groups has a change in arm strength statistically different from the other groups. (p-value =0.0402)