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Learning Objectives
1. Identify the simple linear regression model and de�ne statistics language for key notation

2. Illustrate how ordinary least squares (OLS) �nds the best model parameter estimates

3. Apply OLS in R for simple linear regression of real data

4. Using a hypothesis test, determine if there is enough evidence that population slope  is not 0 (applies to 
as well)

5. Calculate and report the estimate and con�dence interval for the population slope  (applies to  as well)

β1 β0

β1 β0
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Let’s start with an example

 

Average life expectancy vs. female literacy rate

 

Each point on the plot is for a different country

 

 = country’s adult female literacy rate

 

 = country’s average life expectancy (years)

X

Y

ˆlife expectancy = 50.9 + 0.232 ⋅ female literacy rate
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Reference: How did I code that?
ggplot(gapm, aes(x = female_literacy_rate_2011,1
                 y = life_expectancy_years_2011)) +2
  geom_point(size = 4) +3
  geom_smooth(method = "lm", se = FALSE, size = 3, colour="#F14124") +4
  labs(x = "Female literacy rate (%)", 5
       y = "Life expectancy (years)",6
       title = "Relationship between life expectancy and \n the female literacy rate in 2011") +7
    theme(axis.title = element_text(size = 30), 8
        axis.text = element_text(size = 25), 9
        title = element_text(size = 30))10
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Dataset description

Data �les

Cleaned: lifeexp_femlit_2011.csv
Needs cleaning: lifeexp_femlit_water_2011.csv

Data were downloaded from 

2011 is the most recent year with the most complete data

 = the average number of years a newborn child would live if current mortality patterns were
to stay the same.

 is the percentage of people ages 15 and above who can, with understanding, read and write
a short, simple statement on their everyday life.

Gapminder

Life expectancy

Adult literacy rate
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https://www.gapminder.org/data/
https://www.gapminder.org/data/documentation/gd004/
http://data.uis.unesco.org/


Get to know the data (1/2)

Load data

Glimpse of the data

Note the missing values for our variables of interest

gapm_original <- read_csv(here::here("data", "lifeexp_femlit_2011.csv"))1

glimpse(gapm_original)1
Rows: 188
Columns: 3
$ country                    <chr> "Afghanistan", "Albania", "Algeria", "Andor…
$ life_expectancy_years_2011 <dbl> 56.7, 76.7, 76.7, 82.6, 60.9, 76.9, 76.0, 7…
$ female_literacy_rate_2011  <dbl> 13.0, 95.7, NA, NA, 58.6, 99.4, 97.9, 99.5,…
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Get to know the data (2/2)

Get a sense of the summary statistics

gapm_original %>% 1
  select(life_expectancy_years_2011, female_literacy_rate_2011) %>% 2
  summary()3

 life_expectancy_years_2011 female_literacy_rate_2011
 Min.   :47.50              Min.   :13.00            
 1st Qu.:64.30              1st Qu.:70.97            
 Median :72.70              Median :91.60            
 Mean   :70.66              Mean   :81.65            
 3rd Qu.:76.90              3rd Qu.:98.03            
 Max.   :82.90              Max.   :99.80            
 NA's   :1                  NA's   :108              
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Poll Everywhere Question 1
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Questions we can ask with a simple linear regression model

How do we…

calculate slope & intercept?

interpret slope & intercept?

do inference for slope & intercept?

CI, p-value

do prediction with regression line?

CI for prediction?

Does the model �t the data well?

Should we be using a line to model the data?

Should we add additional variables to the model?

multiple/multivariable regression

ˆlife expectancy = 50.9 + 0.232 ⋅ female literacy rate
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Learning Objectives
1. Identify the simple linear regression model and de�ne statistics language for key notation

2. Illustrate how ordinary least squares (OLS) �nds the best model parameter estimates

3. Apply OLS in R for simple linear regression of real data

4. Using a hypothesis test, determine if there is enough evidence that population slope  is not 0 (applies to 
as well)

5. Calculate and report the estimate and con�dence interval for the population slope  (applies to  as well)

β1 β0

β1 β0
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Simple Linear Regression Model
The (population) regression model is denoted by:

 

 

Unobservable population parameters

 and  are unknown population parameters

 (epsilon) is the error about the line

It is assumed to be a random variable with a…

Normal distribution with mean 0 and constant
variance 

i.e. 

Observable sample data

 is our dependent variable

Aka outcome or response variable

 is our independent variable

Aka predictor, regressor, exposure variable

Y = β0 + β1X + ϵ

β0 β1

ϵ

σ2

ϵ ∼ N(0,σ2)

Y

X
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Simple Linear Regression Model (another way to �ew components)
The (population) regression model is denoted by:

 

 

Component Type Name

Observed response, outcome, dependent variable

Pop. parameter intercept

Pop. parameter slope

Observed predictor, covariate, independent variable

Pop. parameter residuals, error term

Y = β0 + β1X + ϵ

Y

β0

β1

X

ϵ
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If the population parameters are unobservable, how did we get the line
for life expectancy?

 

Note: the population model is the true,
underlying model that we are trying to
estimate using our sample data

Our goal in simple linear regression is
to estimate  and β0 β1
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Poll Everywhere Question 2
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Regression line = best-�t line

 is the predicted outcome for a speci�c value of 

 is the intercept of the best-�t line

 is the slope of the best-�t line, i.e., the increase in 
for every increase of one (unit increase) in 

slope = rise over run

ˆY = ˆβ0 + ˆβ1X

ˆY X

ˆβ0

ˆβ1
ˆY

X
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Simple Linear Regression Model
Population regression model

 

Components

response, outcome, dependent variable

intercept

slope

predictor, covariate, independent variable

residuals, error term

Estimated regression line

 

Components

estimated expected response given
predictor 

estimated intercept

estimated slope

predictor, covariate, independent
variable

Y = β0 + β1X + ϵ

Y

β0

β1

X

ϵ

ˆY = ˆβ0 + ˆβ1X

ˆY
X

ˆβ0

ˆβ1

X
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Learning Objectives
1. Identify the simple linear regression model and de�ne statistics language for key notation

2. Illustrate how ordinary least squares (OLS) �nds the best model parameter estimates

3. Apply OLS in R for simple linear regression of real data

4. Using a hypothesis test, determine if there is enough evidence that population slope  is not 0 (applies to 
as well)

5. Calculate and report the estimate and con�dence interval for the population slope  (applies to  as well)

β1 β0

β1 β0
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It all starts with a residual…

Recall, one characteristic of our population model was
that the residuals, , were Normally distributed:

In our population regression model, we had:

We can also take the average (expected) value of the
population model

We take the expected value of both sides and get:

We call  the expected value of  given 

ϵ
ϵ ∼ N(0,σ2)

Y = β0 + β1X + ϵ

E[Y ] = E[β0 + β1X + ϵ]

E[Y ] = E[β0] + E[β1X] + E[ϵ]

E[Y ] = β0 + β1X + E[ϵ]

E[Y |X] = β0 + β1X

E[Y |X] Y X
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So now we have two representations of our population model

With observed  values and residuals: With the population expected value of  given :

Using the two forms of the model, we can �gure out a formula for our residuals:

And so we have our true, population model, residuals!

This is an important fact! For the population model, the residuals: 

Y

Y = β0 + β1X + ϵ

Y X

E[Y |X] = β0 + β1X

Y = (β0 + β1X) + ϵ

Y = E[Y |X] + ϵ

Y − E[Y |X] = ϵ

ϵ = Y − E[Y |X]

ϵ = Y − E[Y |X]
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Back to our estimated model
We have the same two representations of our estimated/�tted model:

With observed values: With the estimated expected value of  given :

Using the two forms of the model, we can �gure out a formula for our estimated residuals:

This is an important fact! For the estimated/�tted model, the residuals: 

Y = ˆβ0 + ˆβ1X + ϵ̂

Y X

ˆE[Y |X] = ˆβ0 + ˆβ1X

ˆE[Y |X] = ˆβ0 + ˆβ1X

ˆY = ˆβ0 + ˆβ1X

Y = (ˆβ0 + ˆβ1X) + ϵ̂

Y = ˆY + ϵ̂

ϵ̂ = Y − ˆY

ϵ̂ = Y − ˆY
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Indi�dual  residuals in the estimated/�tted model

Observed values for each individual : 

Value in the dataset for individual 

Fitted value for each individual : 

Value that falls on the best-�t line for a
speci�c 

If two individuals have the same , then they

have the same 

i

i Yi

i

i ˆYi

Xi

Xi

ˆYi
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Indi�dual  residuals in the estimated/�tted model

Observed values for each individual : 

Value in the dataset for individual 

Fitted value for each individual : 

Value that falls on the best-�t line for a
speci�c 

If two individuals have the same , then they

have the same 

Residual for each individual: 

Difference between the observed and �tted
value

i

i Yi

i

i ˆYi

Xi

Xi

ˆYi

ϵ̂i = Yi − ˆYi
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Poll Everywhere Question 3
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So what do we do with the residuals?

We want to minimize the sum of residuals

Aka minimize the difference between the observed  value and the estimated expected response given the

predictor (  )

We can use ordinary least squares (OLS) to do this in linear regression!

Idea behind this: reduce the total error between the �tted line and the observed point (error between is called
residuals)

Vague use of total error: more precisely, we want to reduce the sum of squared errors

Think back to my R Shiny app!

We need to mathematically de�ne this!

 

 

Note: there are other ways to estimate the best-�t line!!

Example: Maximum likelihood estimation

Y
ˆE[Y |X]
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Break
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Learning Objectives
1. Identify the simple linear regression model and de�ne statistics language for key notation

2. Illustrate how ordinary least squares (OLS) �nds the best model parameter estimates

3. Apply OLS in R for simple linear regression of real data

4. Using a hypothesis test, determine if there is enough evidence that population slope  is not 0 (applies to 
as well)

5. Calculate and report the estimate and con�dence interval for the population slope  (applies to  as well)

β1 β0

β1 β0
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Setting up for ordinary least squares

Sum of Squared Errors (SSE)
Things to use

Then we want to �nd the estimated coef�cient values that minimize the SSE!

SSE =
n

∑

i=1

ϵ̂2
i

SSE =
n

∑

i=1

(Yi − ˆYi)
2

SSE =
n

∑

i=1

(Yi − (ˆβ0 + ˆβ1Xi))2

SSE =
n

∑

i=1

(Yi − ˆβ0 − ˆβ1Xi)
2

ϵ̂i = Yi − ˆYi

ˆYi = ˆβ0 + ˆβ1Xi
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Poll Everywhere Question 4
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So how do I �nd the coe�cient estimates that minimize the SSE?
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Regression in R: lm()
Let’s discuss the syntax of this function

model1 <- lm(life_expectancy_years_2011 ~ female_literacy_rate_2011,1
                 data = gapm)2
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Regression in R: lm() + summary()
model1 <- lm(life_expectancy_years_2011 ~ female_literacy_rate_2011,1
                 data = gapm)2
summary(model1)3

Call:
lm(formula = life_expectancy_years_2011 ~ female_literacy_rate_2011, 
    data = gapm)

Residuals:
    Min      1Q  Median      3Q     Max 
-22.299  -2.670   1.145   4.114   9.498 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)               50.92790    2.66041  19.143  < 2e-16 ***
female_literacy_rate_2011  0.23220    0.03148   7.377  1.5e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.142 on 78 degrees of freedom
  (108 observations deleted due to missingness)
Multiple R-squared:  0.4109,    Adjusted R-squared:  0.4034 
F-statistic: 54.41 on 1 and 78 DF,  p-value: 1.501e-10
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Regression in R: lm() + tidy()
 

term estimate std.error statistic p.value

(Intercept) ��.������� �.�������� ��.������ �.������e-��

female_literacy_rate_2011 �.������� �.�������� �.������ �.������e-��

 

Regression equation for our model (which we saw a looong time ago):

tidy(model1) %>% 1
  gt() %>% 2
  tab_options(table.font.size = 45)3

ˆlife expectancy = 50.9 + 0.232 ⋅ female literacy rate
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How do we interpret the coe�cients?

Intercept

The expected outcome for the -variable when the -variable is 0

Example: The expected/average life expectancy is 50.9 years for a country with 0% female literacy.

Slope

For every increase of 1 unit in the -variable, there is an expected increase of, on average,  units in the -
variable.

We only say that there is an expected increase and not necessarily a causal increase.

Example: For every 1 percent increase in the female literacy rate, life expectancy increases, on average,
0.232 years.

 

You can say either expected OR average

ˆlife expectancy = 50.9 + 0.232 ⋅ female literacy rate

Y X

X ˆβ1 Y
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Learning Objectives
1. Identify the simple linear regression model and de�ne statistics language for key notation

2. Illustrate how ordinary least squares (OLS) �nds the best model parameter estimates

3. Apply OLS in R for simple linear regression of real data

4. Using a hypothesis test, determine if there is enough evidence that population slope  is not 0 (applies to 
as well)

5. Calculate and report the estimate and con�dence interval for the population slope  (applies to  as well)

β1 β0

β1 β0
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Steps in hypothesis testing
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General steps for hypothesis test for population slope  (t-test)

1. For today’s class, we are assuming that we have
met the underlying assumptions (checked in our
Model Evaluation step)

2. State the null hypothesis.

Often, we are curious if the coef�cient is 0 or not:

3. Specify the signi�cance level.

Often we use 

4. Specify the test statistic and its distribution under
the null

The test statistic is , and follows a Student’s t-
distribution.

5. Compute the value of the test statistic

The calculated test statistic for  is

when we assume  is true.

6. Calculate the p-value

We are generally calculating: 

7. Write conclusion for hypothesis test

We (reject/fail to reject) the null hypothesis that the
slope is 0 at the  signi�ciance level. There is
(suf�cient/insuf�cient) evidence that there is
signi�cant association between ( ) and ( ) (p-value
= ).

β1

H0 : β1 = 0

vs. HA : β1 ≠ 0

α = 0.05

t

ˆβ1

t =
ˆβ1 − β1

SE
ˆβ1

=
ˆβ1

SE
ˆβ1

H0 : β1 = 0

2 ⋅ P(T > t)

100α%

Y X
P(T > t)
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Some important notes

Today we are discussing the hypothesis test for a single coef�cient

 

The test statistic for a single coef�cient follows a Student’s t-distribution

 

It can also follow an F-distribution, but we will discuss this more with multiple linear regression and multi-
level categorical covariates

 

Single coef�cient testing can be done on any coef�cient, but it is most useful for continuous covariates or
binary covariates

 

This is because testing the single coef�cient will still tell us something about the overall relationship
between the covariate and the outcome

 

We will talk more about this with multiple linear regression and multi-level categorical covariates
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Poll Everywhere Question 5
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Life expectancy example: hypothesis test for population slope  (1/4)

Steps 1-4 are setting up our hypothesis test: not much change from the general steps

1. For today’s class, we are assuming that we have met the underlying assumptions (checked in our Model
Evaluation step)

2. State the null hypothesis.

We are testing if the slope is 0 or not:

3. Specify the signi�cance level.

Often we use 

4. Specify the test statistic and its distribution under the null

The test statistic is , and follows a Student’s t-distribution.

β1

H0 : β1 = 0

vs. HA : β1 ≠ 0

α = 0.05

t
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Life expectancy example: hypothesis test for population slope  (2/4)

5. Compute the value of the test statistic

Option 1: Calculate the test statistic using the values in the regression table

term estimate std.error statistic p.value

female_literacy_rate_2011 �.�� �.�� �.�� �.��

Option 2: Get the test statistic value ( ) from R

term estimate std.error statistic p.value

female_literacy_rate_2011 �.�� �.�� �.�� �.��

β1

# recall model1_b1 is regression table restricted to b1 row1
model1_b1 <-tidy(model1) %>% filter(term == "female_literacy_rate_2011")2
model1_b1 %>% gt() %>%3
  tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)4

(TestStat_b1 <- model1_b1$estimate / model1_b1$std.error)1
[1] 7.376557

t∗

model1_b1 %>% gt() %>%1
  tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)2
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Life expectancy example: hypothesis test for population slope  (3/4)

6. Calculate the p-value

The -value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test
statistic assuming the null hypothesis  is true

We know the probability distribution of the test statistic (the null distribution) assuming  is true

Statistical theory tells us that the test statistic  can be modeled by a -distribution with .

We had 80 countries’ data, so 

Option 1: Use pt() and our calculated test statistic

Option 2: Use the regression table output

term estimate std.error statistic p.value

female_literacy_rate_2011 �.������� �.�������� �.������ �.������e-��

β1

p
H0

H0

t t df = n − 2

n = 80

(pv = 2*pt(TestStat_b1, df=80-2, lower.tail=F))1
[1] 1.501286e-10

model1_b1 %>% gt() %>%1
  tab_options(table.font.size = 40)2
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Life expectancy example: hypothesis test for population slope  (4/4)

7. Write conclusion for the hypothesis test

We reject the null hypothesis that the slope is 0 at the  signi�cance level. There is suf�cient evidence that
there is signi�cant association between female life expectancy and female literacy rates (p-value < 0.0001).

β1

5%
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Life expectancy ex: hypothesis test for population intercept  (1/4)

Steps 1-4 are setting up our hypothesis test: not much change from the general steps

1. For today’s class, we are assuming that we have met the underlying assumptions (checked in our Model
Evaluation step)

2. State the null hypothesis.

We are testing if the intercept is 0 or not:

3. Specify the signi�cance level

Often we use 

4. Specify the test statistic and its distribution under the null

This is the same as the slope. The test statistic is , and follows a Student’s t-distribution.

β0

H0 : β0 = 0

vs. HA : β0 ≠ 0

α = 0.05

t
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Life expectancy ex: hypothesis test for population intercept  (2/4)

5. Compute the value of the test statistic

Option 1: Calculate the test statistic using the values in the regression table

term estimate std.error statistic p.value

(Intercept) ��.�� �.�� ��.�� �.��

Option 2: Get the test statistic value ( ) from R

term estimate std.error statistic p.value

(Intercept) ��.�� �.�� ��.�� �.��

β0

# recall model1_b1 is regression table restricted to b1 row1
model1_b0 <-tidy(model1) %>% filter(term == "(Intercept)")2
model1_b0 %>% gt() %>%3
  tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)4

(TestStat_b0 <- model1_b0$estimate / model1_b0$std.error)1
[1] 19.1429

t∗

model1_b0 %>% gt() %>%1
  tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)2
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Life expectancy ex: hypothesis test for population intercept  (3/4)

6. Calculate the p-value

 

Option 1: Use pt() and our calculated test statistic

 

Option 2: Use the regression table output

term estimate std.error statistic p.value

(Intercept) ��.���� �.������ ��.���� �.������e-��

β0

(pv = 2*pt(TestStat_b0, df=80-2, lower.tail=F))1
[1] 3.325312e-31

model1_b0 %>% gt() %>%1
  tab_options(table.font.size = 40)2
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Life expectancy ex: hypothesis test for population intercept  (4/4)

7. Write conclusion for the hypothesis test

We reject the null hypothesis that the intercept is 0 at the  signi�cance level. There is suf�cient evidence that
the intercept for the association between average female life expectancy and female literacy rates is different
from 0 (p-value < 0.0001).

   

Note: if we fail to reject , then we could decide to remove the intercept from the model to force the
regression line to go through the origin (0,0) if it makes sense to do so for the application.

β0

5%

H0
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Learning Objectives
1. Identify the simple linear regression model and de�ne statistics language for key notation

2. Illustrate how ordinary least squares (OLS) �nds the best model parameter estimates

3. Apply OLS in R for simple linear regression of real data

4. Using a hypothesis test, determine if there is enough evidence that population slope  is not 0 (applies to 
as well)

5. Calculate and report the estimate and con�dence interval for the population slope  (applies to  as well)

β1 β0

β1 β0
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Inference for the population slope: hypothesis test and CI

Population model

line + random “noise”

with 
 is the variance of the residuals

Sample best-�t (least-squares) line

Note: Some sources use  instead of 

 

We have two options for inference:

1. Conduct the hypothesis test

Note: R reports p-values for 2-sided tests

2. Construct a 95% con�dence interval for the
population slope 

Y = β0 + β1 ⋅ X + ε

ε ∼ N(0,σ2)
σ2

ˆY = ˆβ0 + ˆβ1 ⋅ X

b ˆβ

H0 : β1 = 0

vs. HA : β1 ≠ 0

β1
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Con�dence interval for population slope 
Recall the general CI formula:

To construct the con�dence interval, we need to:

Set our -level

Find 

Calculate the 

Calculate 

β1

ˆβ1 ± t∗
α,n−2 ⋅ SE

ˆβ1

α

ˆβ1

t∗
n−2

SE
ˆβ1
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Calculate CI for population slope  (1/2)

where  is the -distribution critical value with
.

Option 1: Calculate using each value

Save values needed for CI:

Use formula to calculate each bound

β1

ˆβ1 ± t∗ ⋅ SEβ1

t∗ t
df = n − 2

b1 <- model1_b1$estimate1
SE_b1 <- model1_b1$std.error2

nobs(model1) # sample size n1
[1] 80

(tstar <- qt(.975, df = 80-2))1
[1] 1.990847

(CI_LB <- b1 - tstar*SE_b1)1
[1] 0.1695284

(CI_UB <- b1 + tstar*SE_b1)1
[1] 0.2948619
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Calculate CI for population slope  (2/2)

where  is the -distribution critical value with
.

Option 2: Use the regression table

term estimate std.error statistic p.value conf.low conf.high

(Intercept) ��.��� �.��� ��.��� �.��� ��.��� ��.���

female_literacy_rate_2011 �.��� �.��� �.��� �.��� �.��� �.���

β1

ˆβ1 ± t∗ ⋅ SEβ1

t∗ t
df = n − 2

tidy(model1, conf.int = T) %>% gt() %>%1
  tab_options(table.font.size = 40) %>% fmt_number(decimals = 3)2
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Reporting the coe�cient estimate of the population slope

When we report our results to someone else, we don’t usually show them our full hypothesis test

In an informal setting, someone may want to see it

Typically, we report the estimate with the con�dence interval

From the con�dence interval, your audience can also deduce the results of a hypothesis test

Once we found our CI, we often just write the interpretation of the coef�cient estimate:

General statement for population slope inference

For every increase of 1 unit in the -variable, there is an expected average increase of  units in the -
variable (95%: LB, UB).

In our example: For every 1% increase in female literacy rate, life expectancy increases, on average, 0.232
years (95% CI: 0.170, 0.295).

X ˆβ1 Y
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Many options for how to word our results (Reference)

1. In our example: For every 1% increase in female literacy rate, life expectancy increases, on average, 0.232
years (95% CI: 0.170, 0.295).

 

2. In our example: For every 1% increase in female literacy rate, life expectancy is expected to increase 0.232
years (95% CI: 0.170, 0.295).

 

2. In our example: For every 1% increase in female literacy rate, the average life expectancy increases 0.232
years (95% CI: 0.170, 0.295).
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Poll Everywhere Question 6
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For reference: quick CI for 

Calculate CI for population intercept : 

where  is the -distribution critical value with 

Use the regression table

term estimate std.error statistic p.value conf.low conf.high

(Intercept) ��.��� �.��� ��.��� �.��� ��.��� ��.���

female_literacy_rate_2011 �.��� �.��� �.��� �.��� �.��� �.���

General statement for population intercept inference

The expected outcome for the -variable is ( ) when the -variable is 0 (95% CI: LB, UB).

For example: The average life expectancy is 50.9 years when the female literacy rate is 0 (95% CI: 45.63,
56.22).

β0

β0
ˆβ0 ± t∗ ⋅ SEβ0

t∗ t df = n − 2

tidy(model1, conf.int = T) %>% gt() %>%1
  tab_options(table.font.size = 40) %>% fmt_number(decimals = 3)2

Y ˆβ0 X
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