2023-11-08
Solve double integrals in our mini lesson!
Calculate probabilities for a pair of continuous random variables
Calculate a joint and marginal probability density function (pdf)
Calculate a joint and marginal cumulative distribution function (CDF) from a pdf
Mini Lesson Example 1
Solve the following integral: \(\displaystyle\int_{2}^{3}\displaystyle\int_{0}^{1} xy dydx\)
Mini Lesson Example 2
Solve the following integral: \(\displaystyle\int_{2}^{3}\displaystyle\int_{0}^{1} (x+y) dydx\)
Do this problem at home for extra practice. The solution is available in Meike’s video!
Mini Lesson Example 3
Solve the following integral: \(\displaystyle\int_{2}^{3}\displaystyle\int_{0}^{1} e^{x+y} dydx\)
For a single continuous RV \(X\) is a function \(f_X(x)\), such that for all real values \(a,b\) with \(a \leq b\), \[\mathbb{P}(a \leq X \leq b) = \int_a^b f_X(x)dx\]
For two continuous RVs (\(X\) and \(Y\)), we can define the joint pdf, \(f_{X,Y}(x,y)\), such that for all real values \(a,b, c, d\) with \(a \leq b\) and \(c \leq d\), \[\mathbb{P}(a \leq X \leq b, c \leq Y \leq d) = \int_a^b \int_c^d f_{X,Y}(x,y)dydx\]
Note that \(f_{X,Y}(x,y)\neq \mathbb{P}(X=x, Y=y)\)!!!
In order for \(f_{X,Y}(x,y)\) to be a pdf, it needs to satisfy the properties
\(f_{X,Y}(x,y)\geq 0\) for all \(x,y\)
\(\displaystyle\int_{-\infty}^{\infty}\displaystyle\int_{-\infty}^{\infty} f_{X,Y}(x,y)dxdy=1\)
Definition: Joint cumulative distribution function (Join CDF)
The joint cumulative distribution function (cdf) of continuous random variables \(X\) and \(Y\), is the function \(F_{X,Y}(x,y)\), such that for all real values of \(x\) and \(y\), \[F_{X,Y}(x,y)= \mathbb{P}(X \leq x, Y \leq y) = \int_{-\infty}^x\int_{-\infty}^y f_{X,Y}(s,t)dtds\]
Remarks:
The definition above for \(F_{X,Y}(x,y)\) is a function of \(x\) and \(y\).
The joint cdf at the point \((a,b)\), is \[F_{X,Y}(a,b) = \mathbb{P}(X \leq a, Y \leq b) = \int_{-\infty}^a\int_{-\infty}^b f_{X,Y}(s,t)dtds\]
Definition: Marginal pdf’s
Suppose \(X\) and \(Y\) are continuous r.v.’s, with joint pdf \(f_{X,Y}(x,y)\). Then the marginal probability density functions are \[\begin{aligned} f_X(x)&=& \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy\\ f_Y(y)&=& \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx \end{aligned}\]
Example 1.1
Let \(f_{X,Y}(x,y)= \frac32 y^2\), for \(0 \leq x \leq 2, \ 0 \leq y \leq 1\).
Example 1.2
Let \(f_{X,Y}(x,y)= \frac32 y^2\), for \(0 \leq x \leq 2, \ 0 \leq y \leq 1\).
Do this problem at home for extra practice. The solution is available in Meike’s video!
Example 2.1
Let \(f_{X,Y}(x,y)= 2 e^{-(x+y)}\), for \(0 \leq x \leq y\).
Do this problem at home for extra practice. The solution is available in Meike’s video!
Example 2.2
Let \(f_{X,Y}(x,y)= 2 e^{-(x+y)}\), for \(0 \leq x \leq y\).
Example 3.1
Let \(X\) and \(Y\) have constant density on the square \(0 \leq X \leq 4, 0 \leq Y \leq 4\).
Example 3.1
Let \(X\) and \(Y\) have constant density on the square \(0 \leq X \leq 4, 0 \leq Y \leq 4\).
Do this problem at home for extra practice. The solution is available in Meike’s video!
Example 3.3
Let \(X\) and \(Y\) have constant density on the square \(0 \leq X \leq 4, 0 \leq Y \leq 4\).
Example 4
Let \(X\) and \(Y\) have joint density \(f_{X,Y}(x,y)= \frac85(x+y)\) in the region \(0 < x < 1,\ \frac12 < y <1\). Find the pdf of the r.v. \(Z\), where \(Z=XY\).
Chapter 25 Slides