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Learning objectives

1. Define independence of 2-3 events given probability notation

2. Calculate whether two or more events are independent



Revisiting our coin toss

Question: Which of the following sequences of coin tosses of heads (H) and tails (T') is more likely to happen,
assuming the coin is fair?
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Independent Events

Definition: Independence

Events A and B are independent if
P(A N B)=PA) - PB).

Notation: For shorthand, we sometimes write

A 1 B,
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to denote that A and B are independent events.
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Example of two dice indegpendoct

Two dice (red and gPue) arerolled. Let A =event a total of 7 appears, and B = event red die is a six. Are events A
and B independent?
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Independence of 3 Events

Definition: Independence of 3 Events

Events A, B, and C are mutually independent if AL B ALC B1LC
1) PANB) = PA) - P(B) — A ———
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Remark:
On your homework you will show that (1) = (2) and (2) =~ (1).
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Probability at least one smoker
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Suppose you take a random sample of
n people, of which people are
smokers and non-smokers
independently of each other. Let
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e A, =event personiisasmoker,
fori=1,...,n,and

* pg = probability personiisa
—
smoker, for@ =1, ... ,n.

Find the probability that at least
one person in the random sample is
a smoker.
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