Chapter 22: Introduction to Counting

Meike Niederhausen and Nicky Wakim

2023-09-27

Class Overview

- Basic Counting Examples
- Permutations and Combinations
- More Examples: order matters vs. not

Learning Objectives

- 1. Define permutations and combinations
- 2. Characterize difference between sampling with and without replacement
- 3. Characterize difference between sampling when order matters and when order does not matter
- 4. Calculate the probability of sampling any combination of the following: with or without replacement and order does or does not matter

Basic Counting Examples

Basic Counting Examples (1/3)

Example 1

Suppose we have 10 (distinguishable) subjects for study.

- 1. How many possible ways are there to order them?
- 2. How many ways to order them if we can reuse the same subject and
 - need 10 total?
 - need 6 total?
- 3. How many ways to order them without replacement and only need 6?
- 4. How many ways to choose 6 subjects without replacement if the order doesn't matter?

Basic Counting Examples (2/3)

Suppose we have 10 (distinguishable) subjects for study.

Example 1.1	> 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
How many possible ways are there to order them? No REPLACEMENT ORDER MATTERS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Example 1.2	$\Theta_{\frac{1}{2}} = 3628800$
How many ways to order them if we can reuse the same subject and • need 10 total?	$\underline{10} \cdot \underline{10} = 10''$
• need 6 total?	$10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^{6}$

 $P(A) = \frac{|A|}{|S|}$

Basic Counting Examples (3/3)

Suppose we have 10 (distinguishable) subjects for study.

10!

Permutations and Combinations

Permutations and Combinations

Definition: Combinations

Combinations are the number of ways to choose (**order doesn't matter**) r objects from n without replacement.

nCr = "n choose r" =
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$
 $\frac{10}{(10-6)!}$

$$in ex 4 n = 10$$

 $r = 6$
 $n - r = 4$

More Examples: order matters vs. not

More examples: order matters vs. not (1/2)
Example 2
Suppose we draw 2 cards from
a standard deck without
replacement. What is the
probability that both are
spades when
1. order matters?
2. order doesn't matter?

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = /3C2$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = /3C2$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = /3C2$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = /3C2$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = /3C2$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = (3C2)$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = (\frac{13 \cdot 12}{52}) = (\frac{13}{52}) (\frac{12}{51})$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} |A| = (\frac{13}{2}) = (\frac{13 \cdot 12}{52}) = (\frac{13}{52}) (\frac{12}{51})$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 22 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 52 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = 52 \cdot 52 \cdot 52 \cdot 51$$

$$A : \frac{13 \cdot 12}{52} = (\frac{13}{2}) = (\frac{13}{2}) = (\frac{13}{52}) = (\frac{52}{51}) = (\frac{52}{52}) = (\frac{52}{51}) = (\frac{52}{52}) = (\frac{52}{51}) = (\frac{52}{52}) = (\frac{52}{52}) = (\frac{52}{51}) = (\frac{52}{52}) = (\frac{$$

Chapter 22 Slides