Chapter 27: Conditional Distributions

Meike Niederhausen and Nicky Wakim

2023-11-15

Table of contents

- Learning Objectives
- Conditional probabilities we've seen before
- Example starting from a joint pmf: first try!
- What is a conditional density?
- Example starting from a joint pmf: second try!
- Example starting from a joint pmf
- Finding probability with conditional domain and pmf
- Independence and conditional distributions

Learning Objectives

1. Calculate the conditional probability density from a joint pdf

Conditional probabilities we've seen before

What do we know about conditional probabilities for events and discrete RVs?

For events:

$$P(A|B) = \frac{P(A \cap B)}{\underline{P(B)}}$$

For discrete RVs:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

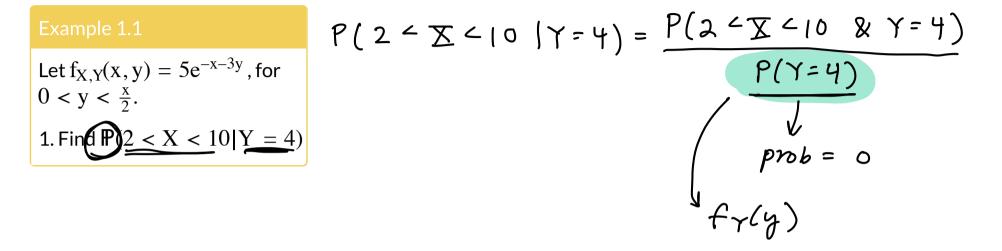
What does it mean for conditional densities of continuous RVs?

For continuous RVs:

$$\frac{joint \ pdf}{marg \ pdf}$$

$$\rightarrow f_{XIY}(XIY) = \frac{f_{X,Y}(X,Y)}{f_{Y}(Y)}$$

Example starting from a joint p_{o} f: first try!



What is a conditional density?

Definition: Conditional density

for $f_{Y}(y)$

The conditional density of a r.v. $X \mbox{ given } Y \ = \ y,$ is

$$\underbrace{f_{X|Y}(x|y)}_{f_{Y}(y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)},$$

Remarks

1. It follows from the definition for the conditional density $f_{X\mid Y}(x\mid y),$ that

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y).$$

2. For a fixed value of $\underline{Y} = \underline{y}$, the conditional density $f_{X|Y}(x|y)$ is an actual pdf, meaning

•
$$f_{X|Y}(x|y) \ge 0$$
 for all x and y, and

•
$$\int_{-\infty} f_{X|Y}(x|y) dx = 1.$$

 $f_{\gamma}(y) = \int_{2y}^{\infty} f_{\gamma}(y) = \int_{2y}^{\infty$ $5e^{-x-3y}dx$ Example starting from a joint pof: second try! $+_{\mathbf{X},\mathbf{Y}}(\mathbf{X},\mathbf{Y})$ txir (xly $=\int_{2y} \underline{5} e^{-x} e^{-3y} dx$ 5e⁻³8)(-p⁻ X= C0 Let $f_{X,Y}(x, y) = 5e^{-x-3y}$, for $0 < y < \frac{x}{2}, \quad y = \frac{1}{2}x$ ay 1. Find $\mathbb{P}(2 < X < 10 | Y = 4)$ e-x p-3y+(+5y) = e-x e 2y for 5e-3 0≤y≤X y > 0 $f_{X|Y}(X|y=4) = e^{-x}e^{8}$ $P(2 \le X \le 10 | Y = 4) = \int_{2}^{10} f_{X|Y}(x | y = 4) dx$ $\simeq 0$ $-xe^{8}dx+\int_{x}^{10}e^{-x}e^{8}dx$ $= \int_{a}^{10} e^{-x} e^{8} dx = \frac{1 - e^{-2}}{1 - e^{-2}}$

 $\rightarrow F_{X,Y}(x=10, y=4) - F_{X,Y}(x=2, y)$ $F_{X,Y}(x=10, y=4) - F_{X,Y}(x=8, y=4)$ $= \int_{x}^{10} \int_{y}^{y} f_{x,y}(x,y) dy dx$ $= \int_{g}^{10} \int_{y}^{y} \frac{5e^{-x}e^{-3y}}{y} dy dx$ $= \int_{g}^{10} \left[5e^{-x} \left(-3e^{-3y} \right) \right]_{y=y}^{y=y} dx$ $f_{\mathbf{X}}(\mathbf{x})$ $f_{XIY}(x,y)$ $AU(=F_{\mathbf{x}}(\mathbf{x})$

Example starting from a joint $p_{m}^{d}f$

for home

Example 1.2

Let $f_{X,Y}(x, y) = 5e^{-x-3y}$, for $0 < y < \frac{x}{2}$. 2. Find $\mathbb{P}(X > 20 | Y = 5)$

Finding probability with conditional domain and pof

Example 2

Randomly choose a point X from the interval [0, 1], and given X = x, randomly choose a point Y from [0, x]. Find $\mathbb{P}(0 < Y < \frac{1}{4}).$

Independence and conditional distributions

Question What is $f_{X|Y}(x|y)$ if X and Y are independent?

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_y(y)} = \frac{f_X(x)f_y(y)}{f_y(y)} = f_X(x)$$

• If $f_{X|Y}(x|y)$ does not depend on y (including the bounds/domain), then X and Y are independent.