CHAPTER 24: CONTINUOUS R.V.'S AND PDF'S

Recall from Chapter 7:

Discrete vs. Continuous r.v.'s

- For a **discrete** r.v., the set of possible values is either finite or can be put into a countably infinite list.
- **Continuous** r.v.'s take on values from continuous *intervals*, or unions of continuous intervals.

How to define probabilities for continuous r.v.'s?

Definition 24.1 (Probability density function).

The probability distribution, or **probability density function (pdf)**, of a continuous random variable X is a function $f_X(x)$, such that for all real values a, b with $a \le b$,

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

Remarks:

- (1) Note that $f_X(x) \neq \mathbb{P}(X = x)!!!$
- (2) In order for $f_X(x)$ to be a pdf, it needs to satisfy the properties
 - $f_X(x) \ge 0$ for all x
 - $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Example 24.2. Let $f_X(x) = 2$, for $a \le x \le 3$.

(1) Find the value of a so that $f_X(x)$ is a pdf.

(2) Find $\mathbb{P}(2.7 \le X \le 2.9)$.

(3) Find $\mathbb{P}(2.7 < X \le 2.9)$.

(4) Find $\mathbb{P}(X = 2.9)$.

(5) Find $\mathbb{P}(X \le 2.8)$.

Definition 24.3 (Cumulative distribution function).

The **cumulative distribution function (cdf)** of a continuous random variable X, is the function $F_X(x)$, such that for all real values of x,

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(s) ds$$

Example 24.4. Let $f_X(x) = 2$, for $2.5 \le x \le 3$. Find $F_X(x)$.

Remarks:

In general, $F_X(x)$ is increasing and

- $\lim_{x\to-\infty} F_X(x) = 0$
- $\lim_{x\to\infty} F_X(x) = 1$

Theorem 24.5.

If X is a continuous random variable with pdf $f_X(x)$ and cdf $F_X(x)$, then for all real values of x at which $F'_X(x)$ exists,

$$\frac{d}{dx}F_X(x) = F_X'(x) = f_X(x)$$

Example 24.6. Let X be a r.v. with cdf

$$F_X(x) = \begin{cases} 0 & x < 2.5 \\ 2x - 5 & 2.5 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

Find the pdf $f_X(x)$.

Solution:

Example 24.7. Let X be a r.v. with pdf $f_X(x) = 2e^{-2x}$, for x > 0. (1) Show $f_X(x)$ is a pdf.

(2) Find $\mathbb{P}(1 \leq X \leq 3)$.

(3) *Find* $F_X(x)$.

(4) Given $F_X(x)$, find $f_X(x)$.

(5) Find $\mathbb{P}(X \ge 1 | X \le 3)$.

(6) Find the median of the distribution of X.