CHAPTER 25: JOINT DENSITIES

Recall from Chapter 24, that the probability distribution, or probability density **function (pdf)**, of a continuous random variable X is a function $f_X(x)$, such that for all real values a, b with $a \leq b$,

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx.$$

How to define the joint pdf for continuous r.v.'s?

Remarks:

- (1) Note that $f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)!!!$
- (2) In order for $f_{X,Y}(x,y)$ to be a pdf, it needs to satisfy the properties

 - $f_{X,Y}(x,y) \ge 0$ for all x,y• $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

Double Integrals Mini Lesson

Example 25.1. Solve the following integrals.

$$(1) \int_2^3 \int_0^1 xy dy dx$$

(2)
$$\int_{2}^{3} \int_{0}^{1} (x+y) dy dx$$

(3)
$$\int_{2}^{3} \int_{0}^{1} e^{x+y} dy dx$$

Definition 25.2 (Joint cumulative distribution function).

The **joint cumulative distribution function (cdf)** of continuous random variables X and Y, is the function $F_{X,Y}(x,y)$, such that for all real values of x and y,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t)dtds$$

Remarks:

- The definition above for $F_{X,Y}(x,y)$ is a **function** of x and y.
- The joint cdf at the point (a, b), is

$$F_{X,Y}(a,b) = \mathbb{P}(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(s,t)dtds$$

Definition 25.3 (Marginal pdf's).

Suppose X and Y are continuous r.v.'s, with joint pdf $f_{X,Y}(x,y)$. Then the **marginal probability density functions** are

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Example 25.4. Let $f_{X,Y}(x,y) = \frac{3}{2}y^2$, for $0 \le x \le 2, \ 0 \le y \le 1$.

(1) Find $\mathbb{P}(0 \le X \le 1, 0 \le Y \le \frac{1}{2})$.

(2) Find $f_X(x)$ and $f_Y(y)$.

Example 25.5. Let $f_{X,Y}(x,y) = 2e^{-(x+y)}$, for $0 \le x \le y$.

(1) Find $f_X(x)$ and $f_Y(y)$.

(2) *Find* $\mathbb{P}(Y < 3)$.

Example 25.6. Let X and Y have constant density on the square $0 \le X \le 4, 0 \le Y \le 4$.

(1) Find $\mathbb{P}(|X - Y| < 2)$.

Example 25.6 continued.

(2) Let $M = \max(X, Y)$. Find the pdf for M, that is $f_M(m)$.

(3) Let $Z = \min(X, Y)$. Find the pdf for Z, that is $f_Z(z)$.

Example 25.7. Let X and Y have joint density $f_{X,Y}(x,y) = \frac{8}{5}(x+y)$ in the region $0 < x < 1, \frac{1}{2} < y < 1$. Find the pdf of the r.v. Z, where Z = XY.

Example 25.7 solution continued.