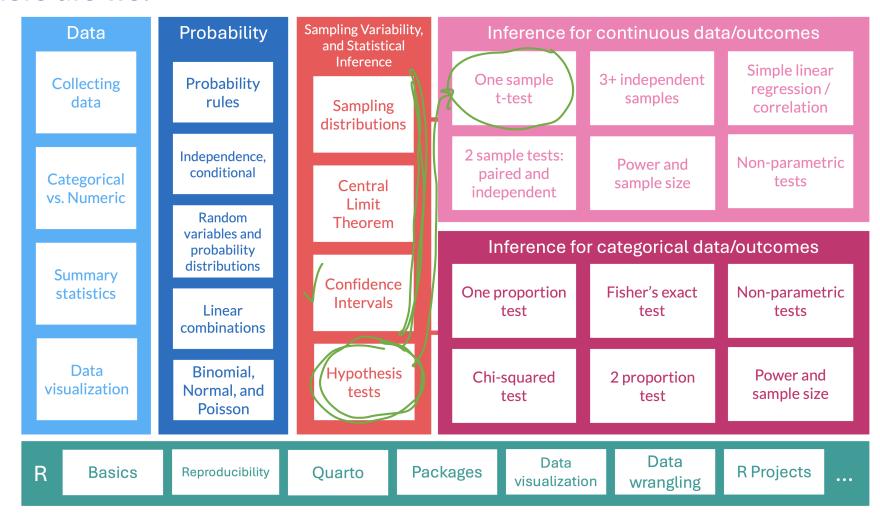
Lesson 11: Hypothesis Testing 1: Singlesample mean

TB sections 4.3, 5.1

Meike Niederhausen and Nicky Wakim 2024-11-06

Where are we?



Learning Objectives

- 1. Understand the relationship between point estimates, confidence intervals, and hypothesis tests.
- 2. Determine if single-sample mean is different than a population mean using a hypothesis test.
- 3. Use R to calculate the test statistic, p-value, and confidence interval for a single-sample mean.

Learning Objectives

- 1. Understand the relationship between point estimates, confidence intervals, and hypothesis tests.
- 2. Determine if s single-sample mean is different than a population mean using a hypothesis test.
- 3. Use R to calculate the test statistic, p-value, and confidence interval for a single-sample mean.

Answering a research question

Research question is a generic form: Is there evidence to support that the population mean is different than μ ?

Two approaches to answer this question:

Confidence interval

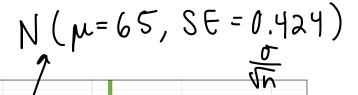
- Create a confidence interval (CI) for the population mean μ from our sample data and determine whether a prescribed value is inside the CI or not.
- Answering the question: is μ a plausible value given our data?

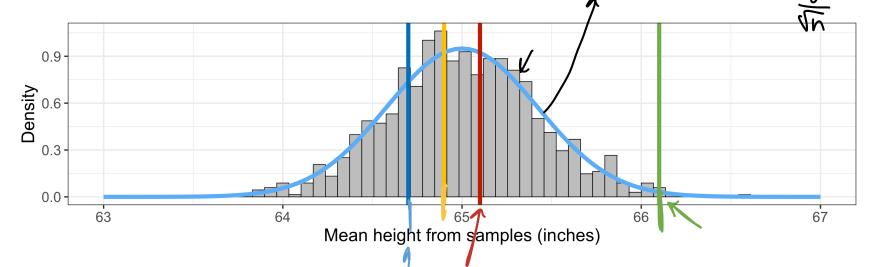
if CI does NOT contain µ, mean then ans is <u>Yes</u> to Research q

Hypothesis test

- Run a **hypothesis test** to see if there is evidence that the population mean μ is significantly different from a prescribed value (\mathcal{M}_0)
- This does not give us a range of plausible values for the population mean μ .
- Instead, we calculate a test statistic and p-value
- See how likely we are to observe the sample mean \overline{x} or a more extreme sample mean assuming that the population mean μ is a prescribed value

Last last time: Point estimates





Sample 50 people $\bar{x} = 65.1$, s = 2.8

Sample 50 people $\bar{x} = 64.7, s = 3.1$

Sample 50 people $\bar{x} = 64.9, s = 3.2$

Sample 50 people $\bar{x} = 66.1, s = 3.4$

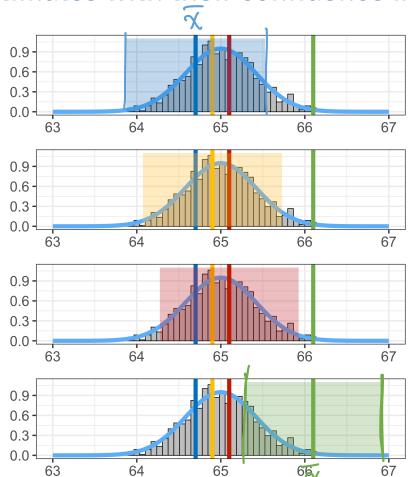
Last time: Point estimates with their confidence intervals for μ

Sample 50 people $\bar{x} = 64.7, s = 3.1$

Sample 50 people $\bar{x} = 64.9, s = 3.2$

Sample 50 people $\bar{x} = 65.1, s = 2.8$

Sample 50 people $\bar{x} = 66.1$, s = 3.4



Do these confidence intervals include μ ?

Research q:
Do we think the
pop mean height
is different
than 65 inches?

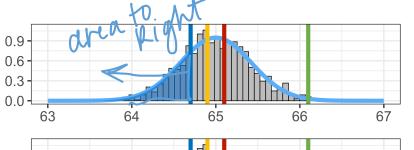
This time: Point estimates with probability assuming population mean μ

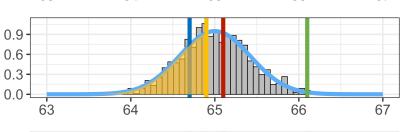
Sample 50 people $\bar{x} = 64.7, s = 3.1$

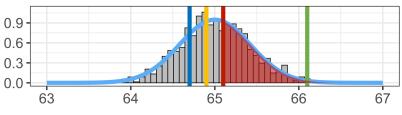
Sample 50 people $\bar{x} = 64.9, s = 3.2$

Sample 50 people $\bar{x} = 65.1, s = 2.8$

Sample 50 people $\bar{x} = 66.1$, s = 3.4







Assuming the population 65 inch mean is μ , what is the probability that we observe \overline{x} or a more extreme sample mean?

Last time: Confidence interval (CI) for the mean μ (z vs. t)

• In summary, we have two cases that lead to different ways to calculate the confidence interval

Case 1: We know the population standard deviation

$$\overline{x} \pm z^* \times SE$$

ullet with $\mathrm{SE}=rac{\sigma}{\sqrt{n}}$ and σ is the population standard deviation

- For 95% CI, we use:
 - $z^* = qnorm(p = 0.975) = 1.96$

Case 2: We do not know the population sd

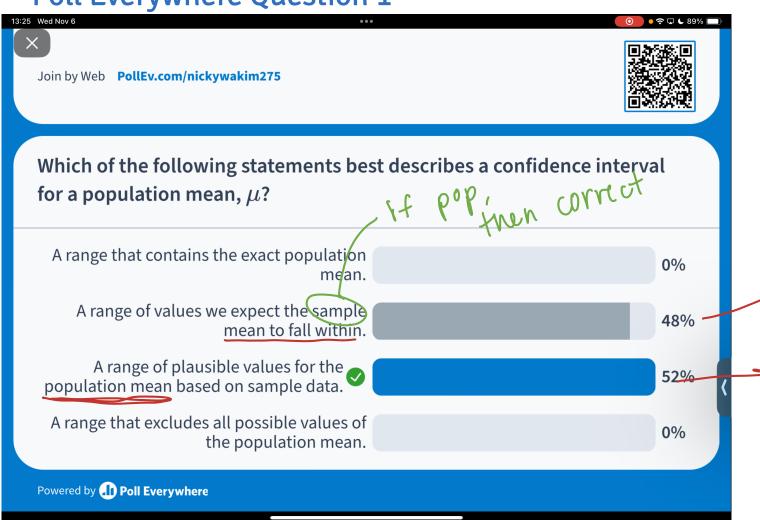
$$\overline{x} \pm t^* \times SE$$

ullet with $\mathrm{SE}=rac{s}{\sqrt{n}}$ and s is the sample standard deviation

• For 95% CI, we use:

$$t^* = qt(p = 0.975, df = n-1)$$

Poll Everywhere Question 1



sample mean will always be in Cl.

trying to get/
present what we think the pop mean is

This time: Hypothesis test (z vs. t)

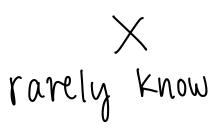
• We have two different distributions from which we run a hypothesis test

Case 1: We know the population standard deviation

• We use a test statistic from a Normal distribution:

$$z_{\overline{x}} = rac{\overline{x} - \mu}{SE}$$

ullet with $\mathrm{SE}=rac{\sigma}{\sqrt{n}}$ and σ is the population standard deviation



Case 2: We do not know the population sd

• We use a <u>test statistic</u> from a <u>Student's t</u>-distribution:

$$t_{\overline{x}} = rac{\overline{x} - \mu}{SE}$$

ullet with $\mathrm{SE}=rac{s}{\sqrt{n}}$ and σ is the sample standard deviation

This is usually the case in real life

Is 98.6°F really the mean "healthy" body temperature?

- We will illustrate how to perform a hypothesis test as we work through this example
- Where did the 98.6°F value come from?
 - German physician Carl Reinhold August Wunderlich determined 98.6°F (or 37°C) based on temperatures from 25,000 patients in Leipzig in 1851.
- 1992 JAMA article by Mackowiak, Wasserman, & Levine
 - They claim that (98.2°) (36.8°C) is a more accurate average body temp
 - Sample: n = 148 healthy individuals aged 18 40 years
- Other research indicating that the human body temperature is lower
- Decreasing human body temperature in the United States since the Industrial Revolution

 Defining Usual Oral Temperature 2
 - Defining Usual Oral Temperature Ranges in Outpatients Using an Unsupervised Learning Algorithm
 - NYT article The Average Human Body Temperature Is Not 98.6 Degrees

Question: based on the 1992 JAMA data, is there evidence to support that the population mean body temperature is different from 98.6°F?

Question: based on the 1992 JAMA data, is there evidence to support that the population mean body temperature is different from 98.6°F?

Two approaches to answer this question:

V

Confidence interval

- Create a **confidence interval (CI)** for the population mean μ and determine whether 98.6°F is inside the CI or not.
- Answering the question: is 98.6°F a plausible value?

Hypothesis test

- Run a **hypothesis test** to see if there is evidence that the population mean μ is significantly different from 98.6°F or not
- This does not give us a range of plausible values for the population mean μ .
- Instead, we calculate a *test statistic* and *p-value*
- See how likely we are to observe the sample mean \overline{x} or a more extreme sample mean assuming that the population mean μ is 98.6°F

Approach 1: Create a 95% CI for the population mean body temperature

- Use data based on the results from the 1992 JAMA study
 - The original dataset used in the JAMA article is not available

However, Allen Shoemaker from Calvin College created a dataset with the same summary statistics as in the JAMA article, which we will use:
Sd from the Sample of 130 ppl

$$\overline{x} = 98.25, \ s = 0.733, \ n = 130$$

CI for μ :

$$egin{array}{c} \overline{x} \pm \underline{t}^* \cdot \overbrace{\sqrt{n}} \\ 98.25 \pm 1.979 & 0.733 \\ \hline 98.25 \pm 0.127 \\ (98.123, 98.377) & \end{array}$$

Used
$$t^* = qt(.975, df=129) = 1.979$$

Conclusion: We are 95% confident that the (population) mean body temperature is between 98.123°F and 98.377°F, which is discernably different than 98.6°F.

Approach 2: Hypothesis Test

From before:

"prescribed valu

- Run a hypothesis test to see if there is evidence that the population mean μ is significantly different from 98.6°F or not.
 - This does not give us a range of plausible values for the population mean μ .
 - Instead, we calculate a test statistic and p-value

• to see how likely we are to observe the sample mean \bar{x} $\bar{\chi} = 98.25$ • or a more extreme sample mean $\sqrt{0000}$ (ess than 98.25

 \circ assuming that the population mean μ is 98.6°F.

How do we calculate a test statistic and p-value?

- Use the sampling distribution and central limit theorem!!
- Focus on Case 2: we don't know the population sd σ

Learning Objectives

1. Understand the relationship between point estimates, confidence intervals, and hypothesis tests.

2. Determine if single-sample mean is different than a population mean using a hypothesis test.

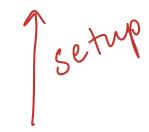
3. Use R to calculate the test statistic, p-value, and confidence interval for a single-sample mean.

Steps in a Hypothesis Test

* general form*

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the $\operatorname{null}(H_0)$ and $\operatorname{alternative}(H_A)$ hypotheses 1. In symbols

 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the **test statistic**. $\sqrt{}$
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution \checkmark
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem



Step 1: Check the assumptions

- The assumptions to run a hypothesis test on a sample are:
 - Independent observations: the observations were collected independently.
 - Approximately normal sample or big n the distribution of the sample should be approximately normal, or the sample size should be at least 30
 - sample approx normal or we can apply CLT
- These are the criteria for the Central Limit Theorem in Lesson 09: Variability in estimates

- In our example, we would check the assumptions with a statement:
 - The individual observations are independent and the number of individuals in our sample is 130. Thus, we can use CLT to approximate the sampling distribution.

Step 2: Set the level of significance α

- Before doing a hypothesis test, we set a cut-off for how small the p-value should be in order to reject H_0 .
- It is important to specify how rare or unlikely an event must be in order to represent sufficient evidence against the null hypothesis.
- We call this the significance level, denoted by the Greek symbol alpha (α)
 - Typically choose $\alpha = 0.05$
- This is parallel to our confidence interval
- your initial assumption about the mean ($\mu = 98.6$)
- \bullet is the probability of rejecting the null hypothesis when it is true (it's a measure of potential error)
- From repeated $(1-\alpha)\%$ confidence intervals, we will have about $(\alpha)\%$ intervals that do not cover μ even though they come from the distribution with mean μ

$$\frac{1}{20.05}$$

100xx),

Step 3: Null & Alternative Hypotheses (1/2)

In statistics, a **hypothesis** is a statement about the value of an **unknown population parameter**.

A hypothesis test consists of a test between two competing hypotheses:

- 1. a null hypothesis H_0 (pronounced "H-naught") vs.
- 2. an alternative hypothesis H_A (also denoted H_1)

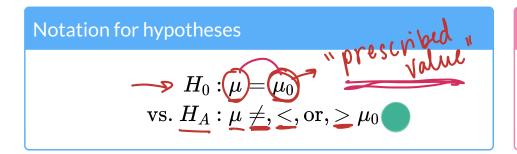
Example of hypotheses in words:

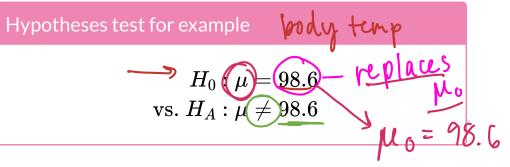
 H_0 : The population mean body temperature is 98.6°F

vs. H_A : The population mean body temperature is not 98.6°F

- 1. H_0 is a claim that there is "no effect" or "no difference of interest."
- 2. H_A is the claim a researcher wants to establish or find evidence to support. It is viewed as a "challenger" hypothesis to the null hypothesis H_0

Step 3: Null & Alternative Hypotheses (2/2)





We call μ_0 the *null value* (hypothesized population mean from H_0)

$$H_A: \mu \neq \mu_0$$

• not choosing a priori whether we believe the population mean is greater or less than the null value μ_0

$$H_A: \mu < \mu_0$$

• believe the population mean is less than the null value μ_0

$$H_A: \mu > \mu_0$$

• believe the population mean is **greater** than the null value μ_0

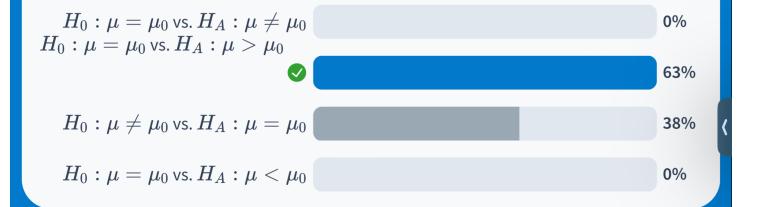
• $H_A: \mu \neq \mu_0$ is the most common option, since it's the most conservative

Poll Everywhere Question 2

Powered by **Poll Everywhere**



For testing if a population mean is greater than a specified value, which of the following correctly specifies the null and alternative hypotheses for a one-sided test?



yer/no:
is it distrib uted that way based on sample

Step 4: Test statistic (& its distribution)

Case 1: We know the population standard deviation

• We use a test statistic from a Normal distribution:

$$z_{\overline{x}} = rac{\overline{x} - \mu_{oldsymbol{0}}}{SE}$$

- with $SE = \frac{G}{\sqrt{n}}$ and G is the <u>population standard</u> deviation
- Statistical theory tells us that $z_{\overline{x}}$ follows a **Standard** Normal distribution N(0,1)

Lase 2: We do not know the population sd

• We use test statistic from Student's t-distribution:

$$t_{\overline{x}} = rac{\overline{x} - \mu_{f 0}}{SE}$$

- ullet with $\mathrm{SE}=rac{s}{\sqrt{n}}$ and σ is the sample standard deviation
- Statistical theory tells us that $t_{\overline{x}}$ follows a **Student's** t distribution with degrees of freedom (df) = n-1

 \overline{x} = sample mean, μ_0 = hypothesized population mean from H_0 , σ = population standard deviation, s = sample standard deviation, n = sample size

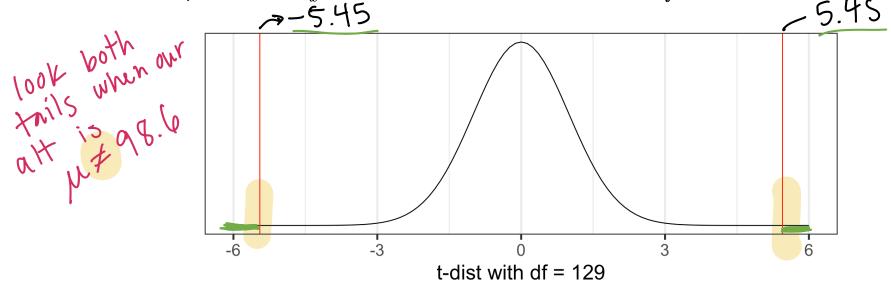
Step 4: Test statistic calculation

From our example: Recall that $\overline{x}=98.25$, $\underline{s}=0.733$, and $\underline{n}=130$

The test statistic is:

$$t_{\overline{x}} = \frac{\overset{\downarrow}{\overline{x}} \overset{\downarrow}{-\mu_0}}{\overset{s}{\sqrt{n}}} = \frac{98.25 - 98.6}{\overset{0.733}{\sqrt{130}}} = \overbrace{-5.45}$$

ullet Statistical theory tells us that $t_{\overline{x}}$ follows a **Student's t-distribution** with df=n-1=129

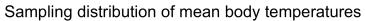


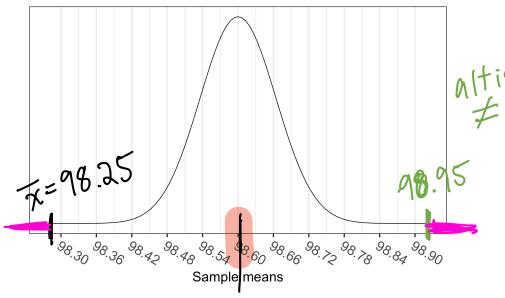
Step 5: p-value

The p-value is the probability of obtaining a test statistic just as extreme or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.

- The *p*-value is a quantification of "surprise"
 - Assuming H_0 s true, how surprised are we with the observed results? $\mu = 9\%$
 - Ex: assuming that the true mean body temperature is 98.6°F, how surprised are we to get a sample mean of 98.25°F (or more extreme)?

• If the p-value is "small," it means there's a small probability that we would get the observed statistic (or more extreme) when H_0 is true.





Step 5: p-value calculation

Calculate the p-value using the **Student's t-distribution** with df = n - 1 = 130 - 1 = 129:

if H1: 14-986 Lap-val= P(T<-5.45)

t-dist with df = 129

Step 6: Conclusion to hypothesis test

$$H_0: \mu = \mu_0$$
 vs. $H_A: \mu
eq \mu_0$

- Need to compare p-value to our selected $\alpha=0.05$
- Do we reject or fail to reject H_0 ?

If p-value $< \alpha$, reject the null hypothesis

- There is sufficient evidence that the (population) mean **body temperature** is discernibly different from μ_0 (p-value = ___)
- The average (insert measure) in the sample was \overline{x} (95% CI,), which is discernibly different from μ_0 (p -value =).

If p-value $\geq \alpha$, fail to reject the null hypothesis

- There is insufficient evidence that the (population) mean body temperature is discernibly different from μ_0 (p-value = ___)
- The average (insert measure) in the sample was \overline{x} (95% CI,), which is not discernibly different from μ_0 (p-value = ___).

usually what we report/share with the world

Step 6: Conclusion to hypothesis test

$$H_0: \mu=98.6 \ \mathrm{vs.}\ H_A: \mu
eq 98.6$$

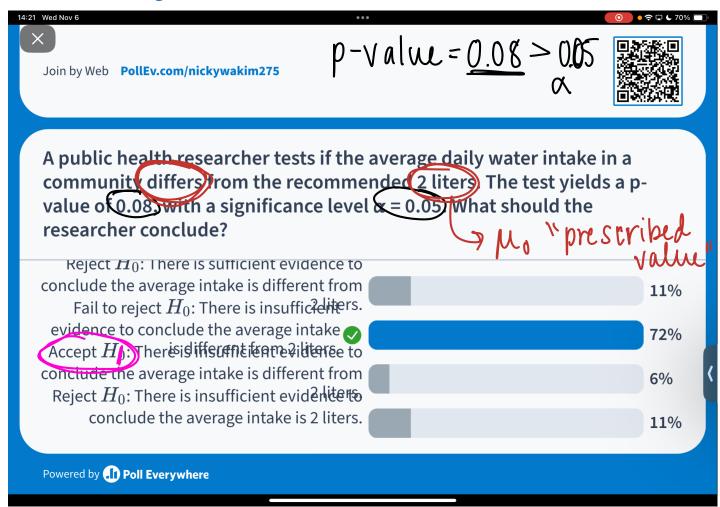
- Recall the p-value = 2.410889×10^{-07} \checkmark
- Need to compare back to our selected lpha=0.05
- Do we reject or fail to reject H_0 ? Reject!

$p-value = 2.41 \times 10^{-07}$ 000000241 < 0.05 $\Rightarrow peject!$

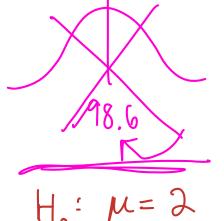
Conclusion statement:

- Basic: ("stats class" conclusion)
 - There is sufficient evidence that the (population) mean body temperature is discernibly different from 98.6°F (p-value < 0.001). (p-value = 0.02)
- Better: ("manuscript style" conclusion)
 - The average body temperature in the sample was 98.25°F (95% CI 98.12, 98.38°F), which is discernibly different from 98.6°F (p-value < 0.001).

Poll Everywhere Question 3



Fail to Reject Ho insuft evidence to conclude avg intak is dift than 2L



 $VS.H_A: \mu \neq \lambda$

Learning Objectives

- 1. Understand the relationship between point estimates, confidence intervals, and hypothesis tests.
- 2. Determine if s single-sample mean is different than a population mean using a hypothesis test.
 - 3. Use R to calculate the test statistic, p-value, and confidence interval for a single-sample mean.

Load the dataset

• The data are in a csv file called BodyTemperatures.csv

t.test: base R's function for testing one mean

- ullet Use the body temperature example with $H_A: \mu
 eq 98.6$
- We called the dataset BodyTemps when we loaded it

```
take the 130 dataset temps in dataset
```

```
data: BodyTemps$Temperature

t = -5.4548, df = 129, p-value = 2.411e-07

alternative hypothesis: true mean is not equal to 98.6

95 percent confidence interval:

98.12200 98.37646

sample estimates:
mean of x

98.24923
```

Note that the test output also gives the 95% CI using the t-distribution.

tidy() the t.test output

- Use the tidy() function from the broom package for briefer output in table format that's stored as a tibble
- Combined with the gt () function from the gt package, we get a nice table

```
tidy(temps_ttest) %>%

gt() %>%

tab_options(table.font.size = 40) # use a dafferent size in your HW

estimate statistic p.value parameter conf.low conf.high method alternative

98.24923 -5.454823 2.410632e-07 129 98.122 98.37646 One Sample t-test two.sided
```

• Since the tidy() output is a tibble, we can easily pull() specific values from it:

Using base R's \$

```
1 tidy(temps_ttest)$p.value
[1] 2.410632e-07
```

What's next?

Cl's and hypothesis testing for different scenarios:

Lesson	Section	Population parameter	Symbol (pop)	Point estimate	Symbol (sample)
√ 11	5.1	Pop mean	μ	Sample mean	\overline{x}
12	5.2	Pop mean of paired diff	μ_d or δ	Sample mean of paired diff	\overline{x}_d
13	5.3	Diff in pop means	$\mu_1-\mu_2$	Diff in sample means	$\overline{x}_1 - \overline{x}_2$
15	8.1	Pop proportion	p	Sample prop	$\overline{\widehat{p}}$
15	8.2	Diff in pop prop's	p_1-p_2	Diff in sample prop's	$\widehat{p}_1 - \widehat{p}_2$

Reference: what does it all look like together?

Example of hypothesis test based on the 1992 JAMA data

Is there evidence to support that the population mean body temperature is different from 98.6°F?

1. **Assumptions:** The individual observations are independent and the number of individuals in our sample is 130. Thus, we can use CLT to approximate the sampling distribution.

2. Set
$$lpha=0.05$$

3. **Hypothesis:**

 $H_0: \mu=98.6$ vs. $H_A: \mu
eq 98.6$

4-5.

```
1 temps_ttest <- t.test(x = BodyTemps$Temperature, mu = 98.6)
2 tidy(temps_ttest) %>% gt() %>% tab_options(table.font.size = 36)

estimate statistic p.value parameter conf.low conf.high method alternative

98.24923 -5.454823 2.410632e-07 129 98.122 98.37646 One Sample t-test two.sided
```

6. **Conclusion:** We reject the null hypothesis. The average body temperature in the sample was 98.25° F (95% CI 98.12, 98.38° F), which is discernibly different from 98.6° F (p-value < 0.001).