Lesson 15: Inference for a single proportion or difference of two (independent) proportions

TB sections 8.1-8.2

Meike Niederhausen and Nicky Wakim

2024-11-25

Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
- 2. Run a hypothesis test for a single proportion and interpret the results.
- 3. Construct and interpret confidence intervals for a single proportion.
- 4. Understand how CLT applies to a difference in binomial random variables
- 5. Run a hypothesis test for a difference in proportions and interpret the results.
- 6. Construct and interpret confidence intervals for a difference in proportions.

single

diff in

Where are we?

Data	Probability	Sampling Variability, and Statistical	Inference for continuous data/outcomes			
Collecting data	Probability rules	Inference Sampling distributions	One sample t-test	3+ independent samples	Simple linear regression / correlation	
Categorical vs. Numeric	Independence, conditional	Central Limit	2 sample tests: paired and independent	Power and sample size	Non-parametric tests	
-	Random variables and probability	Theorem	Inference for categorical data/outcomes			
Summary statistics	distributions Linear combinations	Confidence Intervals	One proportion test	Fisher's exact test	Non-parametric tests	
Data visualization	Binomial, Normal, and Poisson	Hypothesis tests	Chi-squared test	2 proportion test	Power and sample size	
R Basics	Reproducibility	Quarto Pac	kages Data visualizatio	Data on wrangling	R Projects	

Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
- 2. Run a hypothesis test for a single proportion and interpret the results.
- 3. Construct and interpret confidence intervals for a single proportion.
- 4. Understand how CLT applies to a difference in binomial random variables
- 5. Run a hypothesis test for a difference in proportions and interpret the results.
- 6. Construct and interpret confidence intervals for a difference in proportions.

Moving to categorical outcomes

- Previously, we have discussed methods of inference for numerical data
 - Our outcomes were numerical values
 - We were doing inference of means
 - We found confidence intervals for means
 - We ran hypothesis tests for means

Above methods used can be extended to categorical data, such as binomial proportions or data in two-way tables

- Categorical data arise frequently in medical research
 - Disease outcomes and patient characteristics are often recorded in natural categories
 - **Examples:** types of treatment received, whether or not disease advanced to a later stage, or whether or not a patient responded initially to a treatment

From Lesson 5: Binomial random variable

• One specific type of discrete random variable is a binomial random variable

Binomial random variable

- ullet X is a binomial random variable if it represents the number of successes in n independent replications (or trials) of an experiment where
 - Each replicate has two possible outcomes: either success or failure
 - The probability of success is p
 - The probability of failure is q = 1 p
- A binomial random variable takes on values $0, 1, 2, \ldots, n$.
- ullet If a r.v. X is modeled by a Binomial distribution, then we write in shorthand $X\sim \mathrm{Binom}(n,p)$
- Quick example: The number of heads in 3 tosses of a fair coin is a binomial random variable with parameters n=3 and p=0.5.

X is a binomial RV

N is a binomial RV

Probab of success

Probab of p

From Lesson 5: Binomial distribution

Distribution of a **Binomial** random variable

Let X be the total number of successes in n independent trials, each with probability p of a success. Then probability of observing exactly k successes in n independent trials is

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, 2, \dots, n$$

- The parameters of a binomial distribution are p and n.
- ullet If a r.v. X is modeled by a binomial distribution, then we write in shorthand $X\sim \mathrm{Binom}(n,p)$

Mean and variance of a Binomial r.v

If X is a binomial r.v. with probability of success p, then E(X) = np and $\overline{\mathrm{Var}(X)} = np(1-p)$

From Lesson 6: Normal Approximation of the Binomial Distribution

- Also known as: Sampling distribution of \widehat{p}
- ullet If $X\sim \mathrm{Binomial}(n,p)$ and np>10 and nq=n(1-p)>10
 - Ensures sample size (n) is moderately large and the p is not too close to 0 or 1
 - ullet Other resources use other criteria (like npq>5 or np>5)

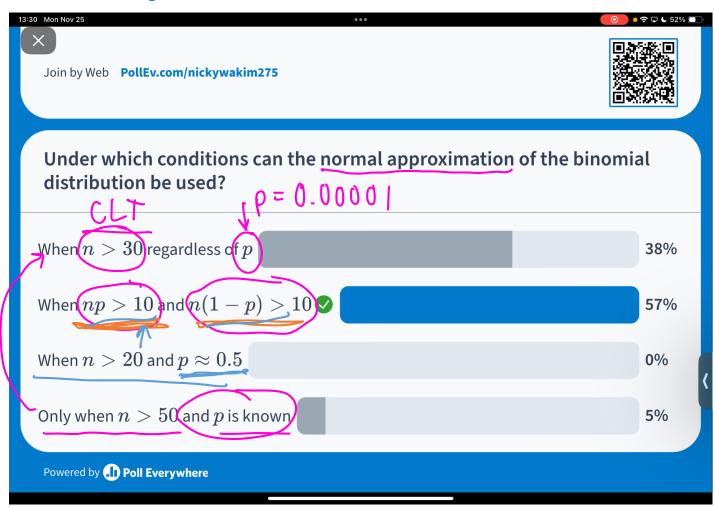
THEN approximately

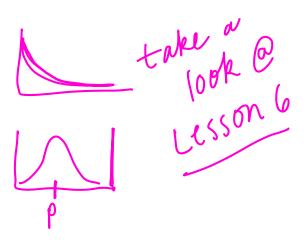
$$X \sim ext{Normal}(\mu_X = np, \sigma_X = \sqrt{np(1-p)})$$

Continuity Correction: Applied to account for the fact that the binomial distribution is discrete, while the normal distribution is continuous

- Adjust the binomial value (# of successes) by ± 0.5 before calculating the normal probability.
- ullet For $P(X \leq k)$ (Binomial), you would instead calculate $P(X \leq k+0.5)$ (Normal approx)
- For $P(X \ge k)$ (Binomial), you would instead calculate $P(X \le k 0.5)$ (Normal approx)

Poll Everywhere Question 1





Sampling distribution of \hat{p}

- $\hat{p} = \frac{X}{n}$ where X is the number of "successes" and n is the sample size.
- $X \sim Bin(n,p)$, where p is the population proportion.
- For n "big enough", the normal distribution can be used to approximate a binomial distribution:

$$X \sim N\left(\mu = np\right)\sigma = \sqrt{np(1-p)}$$

$$E\left(X\right) = \frac{1}{N} E\left(X\right)$$

$$E\left(X\right) = \frac{1}{N} E\left(X\right)$$

$$Var\left(X\right) = \frac{1}{N^2} Var\left(X\right)$$

• What is "big enough"? At least 10 successes and 10 failures are expected in the sample: $np \ge 10$ and $n(1-p) \ge 10$

For proportions: Population parameters vs. sample statistics

Population parameter \int

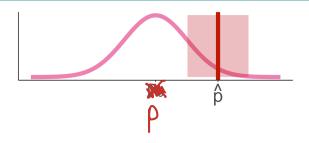
• Proportion: p,π ("pi")

Sample statistic (point estimate)

• Sample proportion \hat{p} "p-hat")

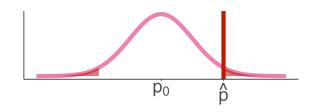
Approaches to answer a research question

Calculate **CI for the proportion** *p*:



$$\hat{p} \pm z^* \cdot SE_{\hat{p}} = \hat{p} \pm z^* \cdot \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

• with z^* = z-score that aligns with specific confidence interval



Hypotheses

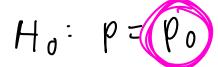
$$egin{aligned} H_0:&p=p_0\ H_A:&p
eq p_0\ (or<,>) \end{aligned}$$

Test statistic

$$oldsymbol{z_{\hat{p}}} = rac{\hat{p} - p_0}{\sqrt{rac{p_0 \cdot (1 - p_0)}{n}}}$$

R code: 1- and 2-sample proportions tests

- x: Counts of successes (can have one x or a vector of multiple x's)
- n: Number of trails (can have one n or a vector of multiple n's)
- p: Null value that we think the population proportion is _____
- alternative: If alternative hypothesis is \neq , \leq , or >
 - Default is "two.sided" (\neq)
- conf. level = Confidence level (1α)
 - Default is 0.05
- correct: Continuity correction, whether we should use it or not
 - Default is TRUE (Nicky says keep it this way!)



Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
 - 2. Run a hypothesis test for a single proportion and interpret the results.
- 3. Construct and interpret confidence intervals for a single proportion.
- 4. Understand how CLT applies to a difference in binomial random variables
- 5. Run a hypothesis test for a difference in proportions and interpret the results.
- 6. Construct and interpret confidence intervals for a difference in proportions.

Example: immune response to advanced melanoma

- Looking for therapies that trigger an immune response to advanced melanoma
- In a study where 52 patients were treated concurrently with two new therapies, nivolumab and ipilimumab
 1 had an immune response.¹
- Outcome: whether or not each person has an immune response

Questions that can be addressed with inference...

- What is the estimated population probability of immune response following concurrent therapy with nivolumab and ipilimumab? (calculate \hat{p})
- What is the $\frac{95\%}{1}$ confidence interval for the estimated population probability of immune response following concurrent therapy with nivolumab and ipilimumab? $\frac{(95\%)}{1}$ Cl of $\frac{p}{2}$
- In previous studies, the proportion of patients responding to one of these agents was 30% or less. Do these results suggest that the probability of response to concurrent therapy is better than 0.30? (Hypothesis test of null of 0.3)

Reference: Steps in a Hypothesis Test

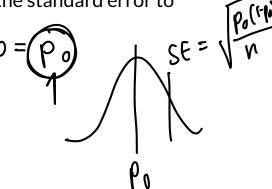
- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the test statistic.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Step 1: Check the assumptions (easier to do after Step 3)

The sampling distribution of \hat{p} is approximately normal when

- 1. The sample observations are independent, and
- 2. At least 10 successes and 10 failures are expected in the sample: $np_0 \ge 10$ and $n(1-p_0) \ge 10$.
- Since p is unknown, it is necessary to substitute p_0 (the null value) for p when using the standard error to conduct hypothesis tests
 - Because we are assuming the standard error of the null hypothesis!
- ullet For the example, we have $p_0=0.30$

 - $\hbox{We check:} \ \underline{np_0} = \underline{52} \cdot \underline{0.3} = \underline{15.6} > 10 \\ \hbox{We check:} \ \underline{n(1-p_0)} = \underline{52(1-0.3)} = \underline{36.4} > 10 \\$



Step 2: Set the level of significance

- Before doing a hypothesis test, we set a cut-off for how small the p-value should be in order to reject H_0 .
- Typically choose $\alpha=0.05$

• See Lesson 11: Hypothesis Testing 1: Single-sample mean

Step 3: Null & Alternative Hypotheses (1/2)

Notation for hypotheses (for paired data)

$$H_0: p=p_0 \ ext{vs.} \ H_A: p
eq, <, ext{or}, > p_0 \ ext{vs.}$$

Hypotheses test for example

$$H_0: p=0.30$$
 vs. $H_A: p
eq 0.30$

We call p_0 the *null value* (hypothesized population mean difference from H_0)

$$H_A: p
eq p_0$$

$$ullet$$
 not choosing a priori whether we believe the population proportion is greater or less than the null value p_0

$$H_A : p < p_0$$

• believe the population proportion is **less** than the null value p_0

$$H_A: p>p_0$$

ullet believe the population population proportion is **greater** than the null value p_0

ullet $H_A:p
eq p_0$ is the most common option, since it's the most conservative

Step 3: Null & Alternative Hypotheses (2/2)

Null and alternative hypotheses in words and in symbols.

One sample test

- H_0 : For individuals who have advanced melanoma and received a treatment of nivolumab and ipilimumab, the population proportion of immune response is 0.30
- H_A : For individuals who have advanced melanoma and received a treatment of nivolumab and ipilimumab, the population proportion of immune response is NOT 0.30

$$H_0: p = 0.30$$

$$H_A$$
 : $p
eq 0.30$

Step 4: Test statistic

Sampling distribution of \hat{p} if we assume $H_0: p = p_0$ is true:

$$\hat{p} \sim N\left(\mu_{\hat{p}} = p, \sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}}
ight) \sim N\left(\mu_{\hat{p}} = p_0, \sigma_{\hat{p}} = \sqrt{rac{p_0 \cdot (1-p_0)}{n}}
ight)$$

Test statistic for a one sample proportion test:

$$test\ stat = rac{ ext{point estimate} - ext{null value}}{SE}$$
 $z_{\hat{p}} = rac{\hat{p} - p_0}{\sqrt{rac{p_0 \cdot (1 - p_0)}{n}}}$

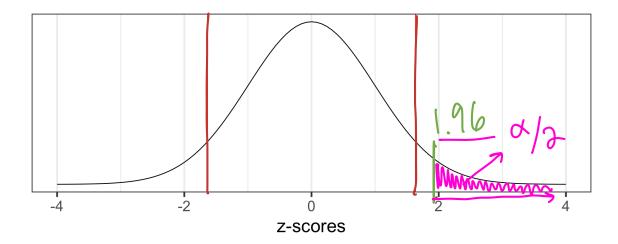
Step 4: Test statistic

From our example: Recall that $\hat{p}=rac{21}{52}=0.4038, n=52$, and $p_0=0.30$

The test statistic is:

$$z_{\hat{p}} = rac{\hat{p} - p_0}{\sqrt{rac{p_0 \cdot (1 - p_0)}{n}}} = rac{21/52 - 0.30}{\sqrt{rac{0.30 \cdot (1 - 0.30)}{52}}} = 1.6341143$$

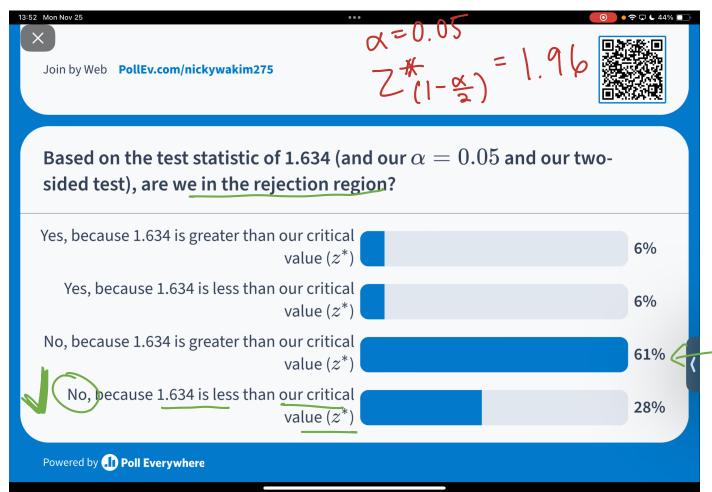
• Let's see the z-score on a Z-distribution (Standard Normal curve)



Lesson 15 Slides

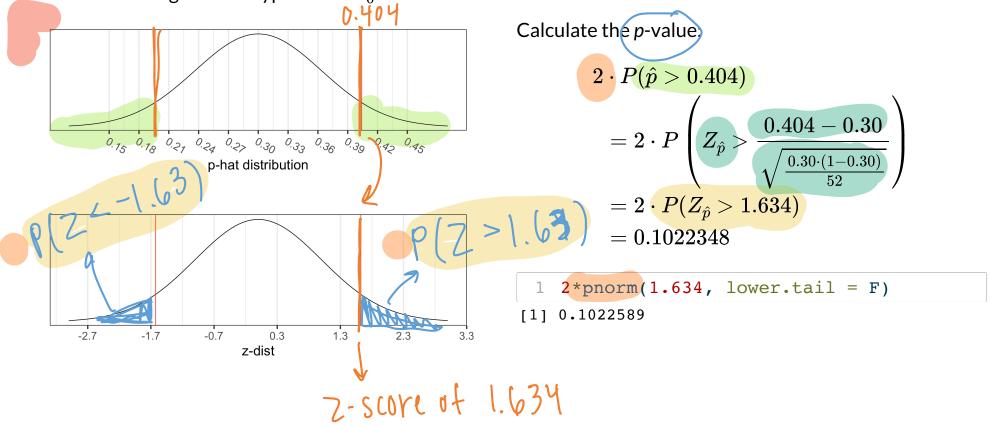
25

Poll Everywhere Question 2



Step 5: p-value

The **p-value** is the **probability** of obtaining a test statistic *just as extreme or more extreme* than the observed test statistic assuming the null hypothesis H_0 is true.



Step 4-5: test statistic and p-value together using prop.test()

```
1 prop.test(x = 21, n = 52, p = 0.30, correct T)

# SWU 5## MS

1-sample proportions test with continuity correction

data: 21 out of 52, null probability 0.3

X-squared = 2.1987, df = 1 p-value = 0.1381

alternative hypothesis: true p is not equal to 0.3

95 percent confidence interval:
    0.2731269 0.5487141

sample estimates:
    p

0.4038462

Tidying the output of prop. test()
```

	estimate	statistic	p.value parame	ter conf.low	u conf.high	n method	alternative
0.4	1038462 2.	.198718 0	.1381256	1 0.2731269	0.5487141	1-sample proportions test with continuity correction	two.sided

• Note: We expect some differences between the test statistic and p-value calculated by hand vs. by R. R uses a slightly different method to calculate.

Step 6: Conclusion to hypothesis test

$$H_0 : p = 0.30 \ H_A : p
eq 0.30$$

- Recall the *p*-value = 0.1022348
- Use α = 0.05.
- Do we reject or fail to reject H_0 ?

Conclusion statement:

- Stats class conclusion
 - There is insufficient evidence that the (population) proportion of individuals who had an immune response is different than 0.30 (p-value = 0.102).
- More realistic manuscript conclusion:
 - In a sample of 52 individuals receiving treatment, 40.4% had an immune response, which is not different from 30% (p-value = 0.102).

Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
- 2. Run a hypothesis test for a single proportion and interpret the results.
 - 3. Construct and interpret confidence intervals for a single proportion.
- 4. Understand how CLT applies to a difference in binomial random variables
- 5. Run a hypothesis test for a difference in proportions and interpret the results.
- 6. Construct and interpret confidence intervals for a difference in proportions.

Conditions for one proportion: test vs. Cl

Confidence interval conditions

- 1. Independent observations
 - The observations were collected independently.

2. The number of successes and failures is at least 10:

$$\hat{n\hat{p}} \geq 10, \ \ n(1-\hat{p}) \geq 10$$

Hypothesis test conditions

- 1. Independent observations
 - The observations were collected independently.

2. The number of **expected** successes and **expected** failures is at least 10.

$$np_0 \ge 10, \ \ n(1-p_0) \ge 10$$

95% CI for population proportion

What to use for SE in CI formula?

 $\hat{p}\pm z^* \cdot SE_{\hat{p}}$

Sampling distribution of \hat{p} :

 $\hat{p} \sim N\left(\mu_{\hat{p}} = p, \sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}}
ight)$

Problem: We don't know what p is - it's what we're estimating with the CI.

Solution: approximate p with \hat{p} :

$$SE_{\hat{p}} = \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

- Note that I am not using a continuity correction here! This means our "by hand" calculation will be different than our R calculation
 - Using the continuity correction is more widely accepted
 - So I would suggest using R to calculate the confidence intervals when you can!

95% CI for population proportion of immune response by hand

95% CI for population meal properties p:

$$\hat{p}\pm z^*\cdot SE_{\hat{p}}$$
 \hat{p} $\pm z^*\cdot \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$ $0.404\pm 1.96\cdot \sqrt{rac{0.404(1-0.404)}{52}}$ $0.404\pm 1.96\cdot 0.068$ 0.404 ± 0.133 $(0.27,0.537)$

Used
$$z^* = qnorm(0.975) = 1.96$$

"By hand" Conclusion:

We are 95% confident that the (population) proportion of individuals with an immune response is between 0.27 and 0.537.

95% CI for population proportion of immune response using R

• We can use R to get similar values

```
1 prop.test(x = 21, n = 52, conf.level = 0.95, correct = T)
```

1-sample proportions test with continuity correction

R Conclusion:

We are 95% confident that the (population) proportion of individuals with an immune response is between 0.273 and 0.549.

• Note: We expect some differences between the confidence interval calculated by hand vs. by R. R uses a slightly different method to calculate.

Break Time!

Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
- 2. Run a hypothesis test for a single proportion and interpret the results.
- 3. Construct and interpret confidence intervals for a single proportion.
 - 4. Understand how CLT applies to a difference in binomial random variables
- 5. Run a hypothesis test for a difference in proportions and interpret the results.
- 6. Construct and interpret confidence intervals for a difference in proportions.

Inference for difference of two independent proportions

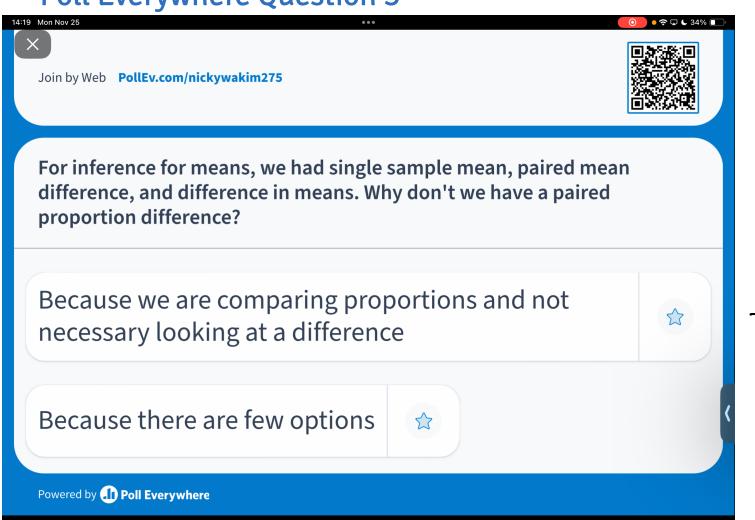
$$\hat{p}_1 - \hat{p}_2$$

• For means, we went from inferences on single sample mean to inferences on difference in means from two independent samples

• We can do the same thing for proportions

• We will go from inferences on single sample proportion to inferences on difference in proportions from two independent samples

Poll Everywhere Question 3



cannot take diff w/in

For difference in proportions: Population parameters vs. sample statistics

Population parameter

- Population 1 proportion: p_1 , π_1 ("pi")
- Population 2 proportion: p_2 , π_2 ("pi")

• Difference in proportions: $p_1 - p_2$

very m,-m, similar

Sample statistic (point estimate)

- Sample 1 proportion: \hat{p}_1 , $\hat{\pi}_1$ ("pi")
- Sample 1 proportion: \hat{p}_2 , $\hat{\pi}_2$ ("pi")

• Difference in proportions: $\hat{p}_1 - \hat{p}_2$

Sampling distribution of $\hat{p}_1 - \hat{p}_2$

$$oldsymbol{\hat{p}_1} = \overbrace{rac{X_1}{n_1}} ext{ and } \hat{p}_2 = rac{X_2}{n_2},$$

- $X_1 \otimes X_2$ are the number of "successes"
- $n_1 \& n_2$ are the sample sizes of the 1st & 2nd samples
- Each \hat{p} can be approximated by a normal distribution, for "big enough" n/ρ
- Since the difference of independent normal random variables is also normal, it follows that for "big enough" n_1 and n_2

$$\lambda iff_2$$
 normal is now λiff_3 normal λiff_4 normal λiff_5 norma

• What is "big enough"? At least 10 successes and 10 failures are expected in the sample: $n_1p\geq 10$, $n_1(1-p)\geq 10, n_2p\geq 10$, and $n_2(1-p)\geq 10$

Approaches to answer a research question

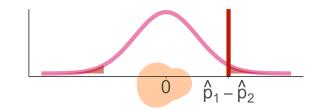
• Research question is a generic form for a single proportion: Is there evidence to support that the population proportions are different from each other?

Calculate CI for the proportion difference $p_1 - p_2$:



$$\hat{p}_1 - \hat{p}_2 \pm z^* \cdot SE_{\hat{p}_1 - \hat{p}_2}$$

• with z^* = z-score that aligns with specific confidence interval



Hypotheses

$$egin{aligned} H_0: &p_1-p_2=0\ H_A: &p_1-p_2
eq 0\ (or <,>) \end{aligned}$$

Test statistic

$$oldsymbol{z_{\hat{p}_1-\hat{p}_2}} = rac{\hat{p}_1 - \hat{p}_2}{SE_{pool}}$$

Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
- 2. Run a hypothesis test for a single proportion and interpret the results.
- 3. Construct and interpret confidence intervals for a single proportion.
- 4. Understand how CLT applies to a difference in binomial random variables
 - 5. Run a hypothesis test for a difference in proportions and interpret the results.
- 6. Construct and interpret confidence intervals for a difference in proportions.

Motivating example: effectiveness of mammograms

A 30-year study to investigate the effectiveness of mammograms versus a standard non-mammogram breast cancer exam was conducted in Canada with 89,835 participants. Each person was randomized to receive either annual mammograms or standard physical exams for breast cancer over a 5-year screening period.

By the end of the 25-year follow-up period, 1,005 people died from breast cancer. The results are summarized in the following table.

▶ Displaying the contingency table in R

	Death from breas		
Group	Yes	No	Total
Control Group	505	44405	44910
Mammogram Group	500	44425	44925
Total	1005	88830	89835

Reference: Steps in a Hypothesis Test

- 1. Check the assumptions
- 2. Set the level of significance α
- 3. Specify the null (H_0) and alternative (H_A) hypotheses
 - 1. In symbols
 - 2. In words
 - 3. Alternative: one- or two-sided?
- 4. Calculate the **test statistic**.
- 5. Calculate the p-value based on the observed test statistic and its sampling distribution
- 6. Write a conclusion to the hypothesis test
 - 1. Do we reject or fail to reject H_0 ?
 - 2. Write a conclusion in the context of the problem

Before we start, we need to calculate the pooled proportion \checkmark

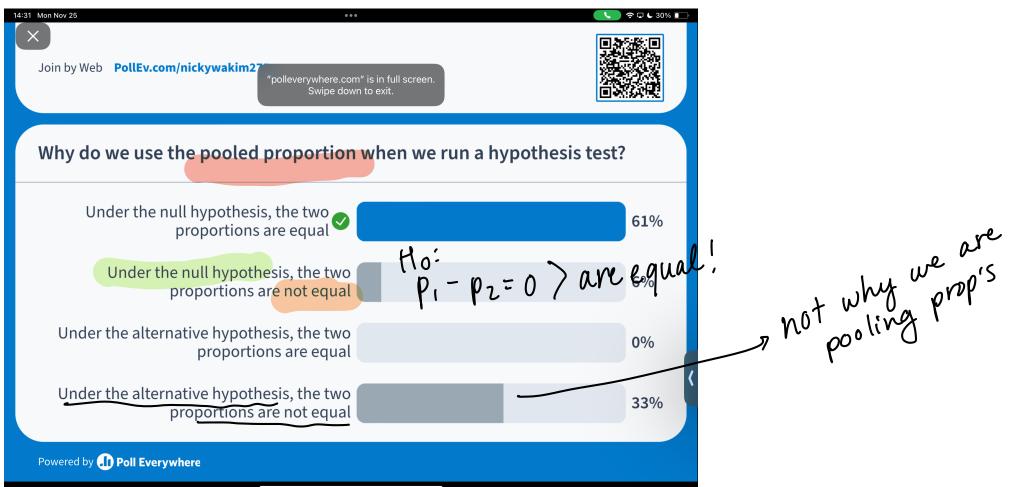
- Often, our null hypothesis is that the two proportions are equal
 - And that both populations are the same
- Thus, we calculate a pooled proportion to represent the proportion under the null distribution

$$ext{pooled proportion} = \hat{p}_{pool} = rac{ ext{total number of successes}}{ ext{total number of cases}} = rac{x_1 + x_2}{n_1 + n_2}$$

• In this example:

$$\hat{p}_{pool} = rac{x_1 + x_2}{n_1 + n_2} = rac{500 + 505}{(500 + 44425) + (505 + 44405)} = 0.01119$$

Poll Everywhere Question 4



Step 1: Check the assumptions

Conditions:

- Independent observations & samples ~
 - The observations were collected independently. V
 - In particular, observations from the two groups weren't paired in any meaningful way.
- The number of expected successes and expected failures is at least 10 for each group using the pooled proportion:
- - $ullet n_1(1-\hat{p}_{pool})=44925(1-0.0112)=44422.42\ge 10$
 - $ullet n_2 \hat{p}_{pool} = 44910 \cdot 0.0112 = 502.4161 \geq 10$
 - $lacksquare n_2(1-\hat{p}_{pool}) = 44910(1-0.0112) = 44407.58 \geq 10$

Step 3: Null and Alternative Hypothesis test

Two samples test

- H_0 : The difference in population proportions of deaths from breast cancer among people who received annual mammograms and annual physical check-ups is 0.
- H_A : The difference in population proportions of deaths from breast cancer among people who received annual mammograms and annual physical check-ups is not 0.

$$egin{aligned} H_0:&p_{mamm}-p_{ctrl}=0\ H_A:&p_{mamm}-p_{ctrl}
eq 0 \end{aligned}$$

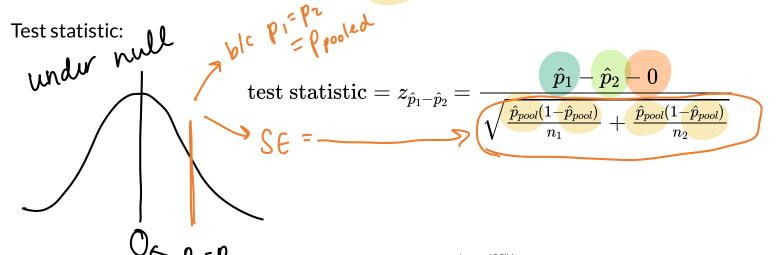
Step 4: Test statistic (1/2)

Sampling distribution of $\hat{p}_1 - \hat{p}_2$:

$$\hat{p}_1 - \hat{p}_2 \sim N\left(\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2, \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1 \cdot (1 - p_1)}{n_1} + \frac{p_2 \cdot (1 - p_2)}{n_2}}\right)$$

Since we assume $H_0: p_1-p_2=0$ is true, we "pool" the proportions of the two samples to calculate the SE:

$$ext{pooled proportion} = \hat{p}_{pool} = rac{ ext{total number of successes}}{ ext{total number of cases}} = rac{x_1 + x_2}{n_1 + n_2}$$



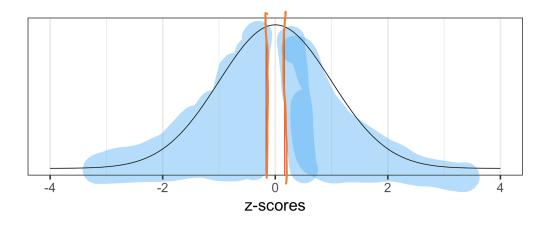
Step 4: Test statistic (2/2)

From our example: Recall that
$$\hat{p}_1=\frac{500}{44925}=0.0111, \hat{p}_2=\frac{505}{44910}=0.0112, \underline{n}_1=44925, \underline{n}_2=44910$$
, and $\hat{p}_{pool}=0.01119$

The test statistic is:

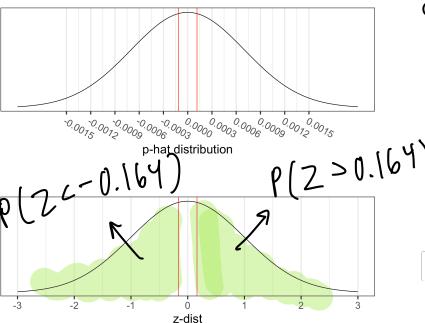
$$z_{\hat{p}_1 - \hat{p}_2} = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{\frac{\hat{p}_{pool} \cdot (1 - \hat{p}_{pool})}{n_1} + \frac{\hat{p}_{pool} \cdot (1 - \hat{p}_{pool})}{n_2}}} = \frac{0.0111 - 0.0112}{\sqrt{\frac{0.01119 \cdot (1 - 0.01119)}{44925} + \frac{0.01119 \cdot (1 - 0.01119)}{44910}}} = -0.163933$$

• Let's see the z-score on a Z-distribution (Standard Normal curve)



Step 5: p-value

The **p-value** is the **probability** of obtaining a test statistic *just as extreme or more extreme* than the observed test statistic assuming the null hypothesis H_0 is true.



Calculate the *p*-value:

$$egin{align*} 2 \cdot P(\hat{p}_1 - \hat{p}_2 < 0.0111 - 0.0112) \ &= P\left(Z_{\hat{p}_1 - \hat{p}_2} < rac{0.0111 - 0.0112}{\sqrt{rac{0.01119 \cdot (1 - 0.01119)}{44925} + rac{0.01119 \cdot (1 - 0.01119)}{44910}}}
ight) \ &= 2 \cdot P(Z_{\hat{p}} - 0.164) \ &= 0.8697839 \end{aligned}$$

Step 4-5: test statistic and p-value together using prop.test()

```
1 prop.test(x = c(505, 500), n = c(44910, 44925)) # no p needed

2-sample test for equality of proportions with continuity correction

data: c(505, 500) out of c(44910, 44925)

X-squared = 0.01748, df = 1, p-value = 0.8948

alternative hypothesis: two.sided
```

-0.001282751 0.001512853 sample estimates:
 prop 1 prop 2

95 percent confidence interval:

0.01124471 0.01112966

► Tidying the output of prop. test()

estimate1	estimate2	statistic	p.value paramete	r conf.low	conf.high	method	alternative
0.01124471 (0.01112966 0.0	01747975 0.8	3948174 <i>°</i>	-0.001282751	0.001512853	2-sample test for equality of proportions with continuity correction	two.sided

• Note: We expect some differences between the test statistic and p-value calculated by hand vs. by R. R uses a slightly different method to calculate.

Step 6: Conclusion to hypothesis test

$$egin{aligned} H_0:&p_{mamm}-p_{ctrl}=0\ H_A:&p_{mamm}-p_{ctrl}
eq 0 \end{aligned}$$

- Recall the *p*-value = 0.8698
- Use α = 0.05
- Do we reject of fail to reject \hat{H}_0 ?

Conclusion statement:

- Stats class conclusion
 - There is insufficient evidence that the difference in (population) proportions of deaths from breast cancer among people who received annual mammograms and annual physical check-ups ρ different (p-value = 0.87).
- More realistic manuscript conclusion:
 - 1.11% of people receiving annual mammograms (n=44925) and (1.12%) of people receiving annual physical exams (n=44925) died from breast cancer (p-value = 0.87).

Learning Objectives

- 1. Remind ourselves of the Normal approximation of the binomial distribution and define the sampling distribution of a sample proportion
- 2. Run a hypothesis test for a single proportion and interpret the results.
- 3. Construct and interpret confidence intervals for a single proportion.
- 4. Understand how CLT applies to a difference in binomial random variables
- 5. Run a hypothesis test for a difference in proportions and interpret the results.
 - 6. Construct and interpret confidence intervals for a difference in proportions.

Conditions for difference in proportions: test vs. CI

Confidence interval conditions

- 1. Independent observations & samples
 - The observations were collected independently.
 - In particular, observations from the two groups weren't paired in any meaningful way.

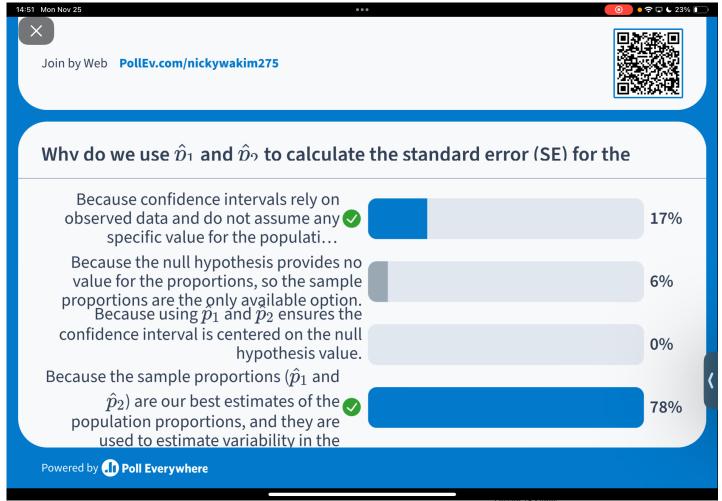
- 2. The number of successes and failures is at least 10 for each group.
 - $egin{align} ullet n_1 \hat{p}_1 &\geq 10, & n_1 (1 \hat{p}_1) \geq 10 \ ullet n_2 \hat{p}_2 &\geq 10, & n_2 (1 \hat{p}_2) \geq 10 \ \end{pmatrix}$

Hypothesis test conditions

- 1. Independent observations & samples
 - The observations were collected independently.
 - In particular, observations from the two groups weren't paired in any meaningful way.

- 2. The number of **expected** successes and **expected** failures is at least 10 for each group - using the pooled proportion:
 - $n_1 \hat{p}_{pool} \ge 10, \;\; n_1 (1 \hat{p}_{pool}) \ge 10$
 - $n_2\hat{p}_{nool} \ge 10, \ \ n_2(1-\hat{p}_{nool}) \ge 10$

Poll Everywhere Question 5



95% CI for population difference in proportions

What to use for SE in CI formula?

$$\hat{p}_1-\hat{p}_2\pm z^*\cdot SE_{\hat{p}_1-\hat{p}_2}$$

SE in sampling distribution of $\hat{p}_1 - \hat{p}_2$

$$\sigma_{\hat{p}_1-\hat{p}_2} = \sqrt{rac{p_1\cdot (1-p_1)}{n_1} + rac{p_2\cdot (1-p_2)}{n_2}}$$

Problem: We don't know what p is - it's what we're

estimating with the CI.

Solution: approximate p_1, p_2 with \hat{p}_1, \hat{p}_2

$$SE_{\hat{p}_1-\hat{p}_2} = \sqrt{rac{\hat{p}_1\cdot(1-\hat{p}_1)}{n_1} + rac{\hat{p}_2\cdot(1-\hat{p}_2)}{n_2}}$$

95% CI for the population difference in proportions

95% CI for population mean difference $p_1 - p_2$:

$$\hat{p}_1 - \hat{p}_2 \pm z^* \cdot SE_{\hat{p}_1 - \hat{p}_2} \ \hat{p}_1 - \hat{p}_2 \pm z^* \cdot \sqrt{\hat{p}_1 \cdot (1 - \hat{p}_1)} + \hat{p}_2 \cdot (1 - \hat{p}_2)} \ 0.01113 - 0.01124 \pm 1.96 \cdot \sqrt{\frac{0.01113}{44925}} + \frac{0.01124 \cdot (1 - 0.01124)}{44910} \ 0.35 \pm 1.96 \cdot 0.001 \ 0.35 \pm 0.002 \ (-0.002, 0.002)$$

Used $z^* = qnorm(0.975) = 1.96$

Interpretation:

We are 95% confident that the difference in (population) proportions of deaths due to breast cancer comparing people who received annual mammograms to annual physical check-ups is between -0.002 and 0.002.

95% CI for the population difference in proportions

• We can use R to get similar values

```
prop.test(x = c(505, 500), n = c(44910, 44925))

2-sample test for equality of proportions with continuity correction

data: c(505, 500) out of c(44910, 44925)

X-squared = 0.01748, df = 1, p-value = 0.8948
alternative hypothesis: two.sided
95 percent confidence interval:
-0.001282751 0.001512853
sample estimates:
   prop 1   prop 2
0.01124471 0.01112966
```

R Conclusion:

We are 95% confident that the difference in (population) proportions of deaths due to breast cancer comparing people who received annual mammograms to annual physical check-ups is between 0.0013 and 0.0015.

• Note: We expect some differences between the confidence interval calculated by hand vs. by R. R uses a slightly different method to calculate.