Lesson 8: Interpretations and Visualizations of Odds Ratios

Nicky Wakim 2024-04-24

Lesson 8: Interpretations and Visualizations of Odds Ratios

Last time to this time

- Used the Wald test and Wald 95% confidence interval to interpret coefficients in a fitted model
- This time: Interpret using odds ratio

Learning Objectives

- 1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.
- 2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.
- 3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory variable.
- 4. Report the odds ratio using a table and/or a forest plot.

So far we've looked at the association using the log-odds scale

For a *population* simple logistic regression model with a continuous predictor

 $\operatorname{logit}(\pi(X)) = eta_0 + eta_1 \cdot X$ ${\boldsymbol{\leftarrow}}$

- β_0 : log-odds when X is 0
- β_1 : increase in log-odds for every 1 unit increase in X

For our fitted simple logistic regression model with a continuous predictor w/data

 $\operatorname{logit}(\widehat{\pi}(X)) = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$

- \widehat{eta}_0 : estimated log-odds of Y=1 when X is 0.
- $\widehat{\beta}_1$: estimated increase in log-odds of Y = 1 for every 1 unit increase in X
- Can use expected instead of estimated

Example: From last class

- 1 bc_reg = glm(Late_stage_diag ~ Age_c, data = bc, family = binomial)
- 2 tidy(bc_reg, conf.int=T) %>% gt() %>% tab_options(table.font.size = 35) %>%
- 3 fmt_number(decimals = 3)

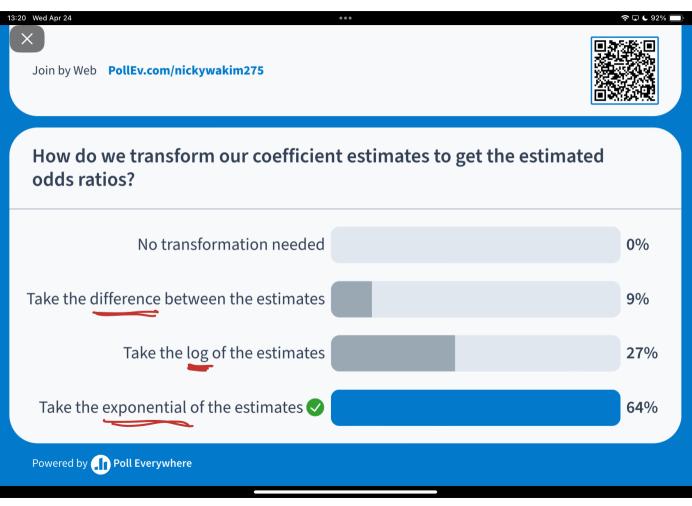
• For our *fitted* simple logistic regression model with age as a predictor

$$\operatorname{logit}(\widehat{\pi}(Age^c)) = -0.989 + 0.057 \cdot Age^c$$

• $\widehat{\beta}_0$: The estimated log-odds is -0.989 when age is 61.71 years (95% CI: -1.035, -0.944) Age^c = 0

• $\hat{\beta}_1$: The estimated increase in log-odds is 0.057 for every 1 year increase in age (95% CI: 0.051, 0.063).

Poll Everywhere Question 1



We typically interpret our results using odds ratios

For our fitted simple logistic regression model with a continuous predictor

$$\operatorname{logit}(\widehat{\pi}(X)) = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$

- How do we go from interpretations of $\hat{\beta}_0$ and $\hat{\beta}_1$ using log odds to odds ratios?
- We will need to take the exponential of our model:
 - $\exp(\widehat{\beta}_0)$: expected odds that Y = 1 when X is 0.
 - $\exp(\widehat{eta}_1)$: expected odds ratio that Y = 1 for every 1 unit increase in X
- Important distinction:
 - We take the inverse logit to find our predicted probability
 - We take the exponential to interpret the odds/odds ratios

Intro/Recap of Interpreting Fitted Model

- Interpret coefficients from fitted logistic regression model
 - Goodness-of-fit of model should be assessed before summarizing findings (have not covered yet)
 - In this lecture: assume model fits data well
- The interpretation of the coefficients involves two issues:
 - The functional relationship between the dependent variable and the independent variable (link function)
 - Unit of change for the independent variable
- We will learn the interpretation for
 - Binary independent variable
 - Categorical independent variable with multiple groups
 - We looked at this for our race and ethnicity variable
 - Continuous independent variable

Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

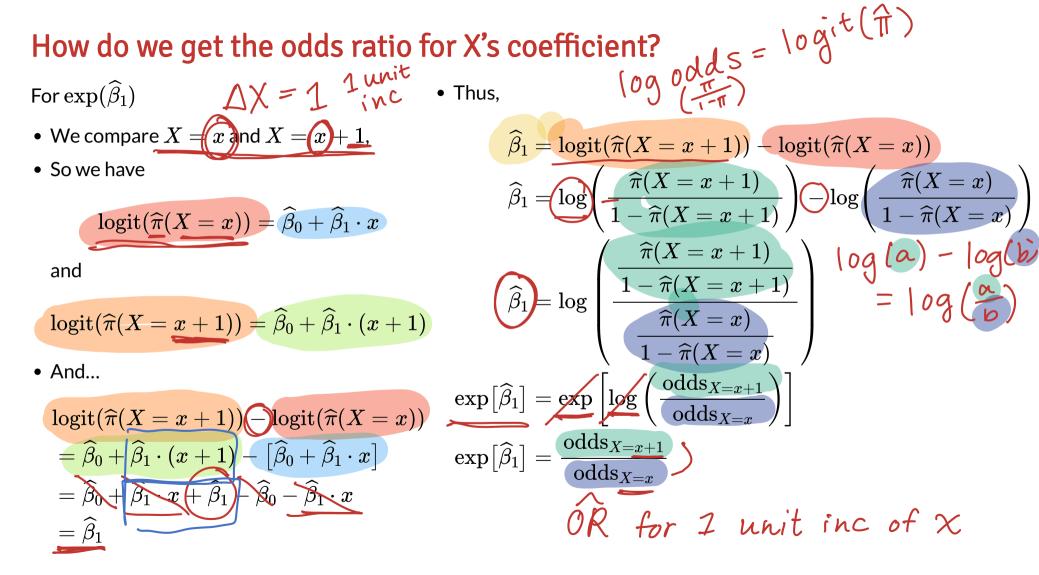
- 2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.
- 3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory variable.
- 4. Report the odds ratio using a table and/or a forest plot.

Coefficient interpretation: Continuous Independent Variable

- For simplicity, we assume the linear relationship between logit and continuous variable *x*
- Again using simple logistic regression model to illustrate the interpretation of \widehat{eta} for a continuous variable x

$$\operatorname{logit}(\widehat{\pi}(X)) = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$

- The estimated slope coefficient, \widehat{eta}_1 , is the **expected change in the log odds for 1 unit increase in** x
 - Additional attention should be paid to picking a meaningful units of change in x



Example: Interpretation of Age Coefficient/OR

- $\hat{\beta}_1$ is 0.057, suggesting that one year increase in age is associated with 0.057 increase in log odds of receiving a late stage breast cancer diagnosis
- $\exp(\hat{\beta}_1)$ is 1.06 suggesting that one year increase in age is associated with 1.06 times the odds of receiving a late stage breast cancer diagnosis
- For continuous covariates in logistic regression model, it is helpful to subtract 1 from the odds ratio and multiply by 100 to obtain the percentage change in odds for 1-unit increase.

The estimated OR for age is 1.06, suggesting that a 1-year increase in age is associated with a 6% increase in the predicted odds of late stage diagnosis in the patient population

 $0.06 \rightarrow 6\%$

Example: Age and Late Stage Diagnosis (1/5)

Odds ratio from logistic regression

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for every 1 year increase in age.

Needed steps:

- 1. Fit the regression model -
- 2. Transform the coefficients into odds ratios ←
- 3. Interpret the odds ratio

Example: Age and Late Stage Diagnosis (2/5)

Odds ratio from logistic regression

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for every 1 year increase in age.

1. Fit the regression model

```
1 bc_reg = glm(Late_stage_diag ~ Age_c, data = bc, family = binomial)
2 summary(bc_reg)
```

Null deviance: 11861 on 9999 degases teofation and the second and

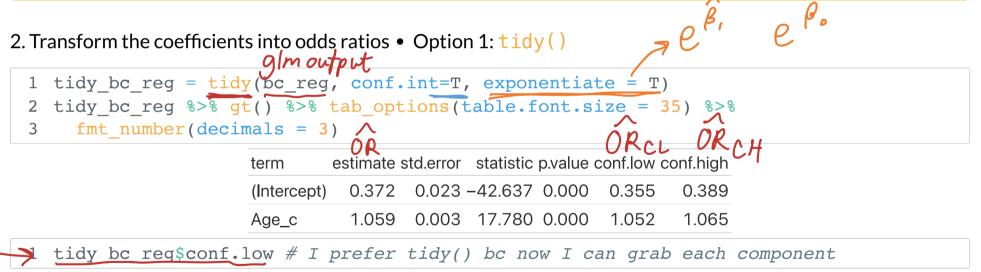
Residual deviance: 11510 on 9998 degrees of freedom AIC: 11514

Number of Fisher Scoring iterations: 4

Example: Age and Late Stage Diagnosis (3/5)

Odds ratio from logistic regression

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for every 1 year increase in age.



[1] 0.3551931 1.0520321

Example: Age and Late Stage Diagnosis (4/5)

Odds ratio from logistic regression

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for every 1 year increase in age.

2. Transform the coefficients into odds ratios • Option 2: logistic.display()

1 logistic.display(bc_reg) # Cannot grab each component in this

```
Logistic regression predicting Late_stage_diag : 1 vs 0

P(Wald's test) P(LR-test)

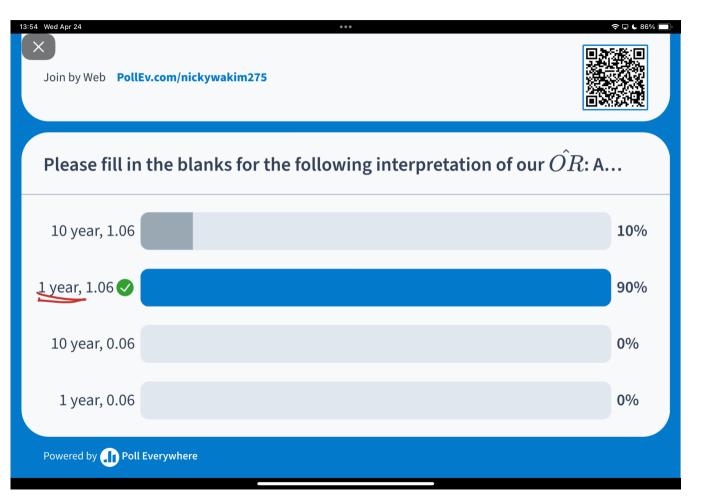
Age_c (cont. var.) 1.06 (1.05,1.07) < 0.001 < 0.001

Log-likelihood = -5754.8442

No. of observations = 10000

AIC value = 11513.6884
```

Poll Everywhere Question 1



Example: Age and Late Stage Diagnosis (5/5)

Odds ratio from logistic regression

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for every 1 year increase in age.

3. Interpret the odds ratio For every one year increase in age, there is an estimated 5.86% increase in the **stimulated** odds of late stage breast cancer diagnosis (95% CI: 5.2%, 6.53%). $\sqrt{7}$ $\sqrt{$

Transformations of continuous variable to make more interpretable

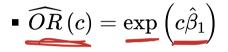
- Sometimes a change in "1" unit may not be considered clinically interesting
 - For example, a 1 year increase in age or a 1 mm Hg increase in systolic blood pressure may be too small for a meaningful change in log odds
 - Instead, we may be interested to find out the log odds change for a increase of 10 years in age or 10 mm Hg in systolic blood pressure
 - On the other hand, if the range of x is small (say 0-1), than a change in 1 unit of x is too large to be meaningful
- We should be able to compute and interpret coefficients for a continuous independent covariate x for an arbitrary change of "c" units in x

.1 inc

Transformations of continuous variable to make more interpretable

• The estimated log odds ratio for a change of c units in x can be obtained from

$$\hat{g}\left(x+c
ight)-\hat{g}\left(x
ight)=\hat{c\hat{eta}_{1}}$$



• The 95% CI for $\widehat{OR}(c)$ is:

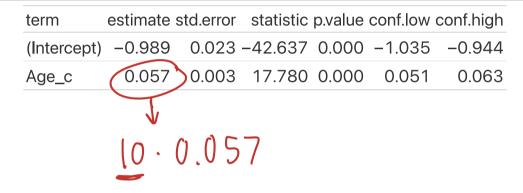
$$\exp\left(c\hat{eta}_{1}\pm 1.96\cdot c\cdot SE_{\hat{eta}_{1}}
ight)$$

- The c is chosen to be a clinically meaningful unit change in x
- The value of c should be clearly specified in all tables and calculations
 - Because the estimated OR and the corresponding CI depends on the choice of c value

Example: 10 year increase in age and Late Stage Diagnosis

• What if we are interested in learning the OR corresponding to 10-year increase in age?

1 bc_reg = glm(Late_stage_diag Age_c data = bc, family = binomial)
2 tidy(bc_reg, conf.int=T) %>% gt() %>% tab_options(table.font.size = 35) %>%
3 fmt_number(decimals = 3)



Example: 10 year increase in age and Late Stage Diagnosis

• What if we are interested in learning the OR corresponding to 10-year increase in age?

$$\widehat{OR}\left(10
ight)=\exp\left(10\cdot\hat{eta}_{1}
ight)=\exp\left(0.56965
ight)=1.767$$

• The 95% CI for $\widehat{OR}\left(10
ight)$ is:

$$egin{aligned} \widehat{OR} \left(10
ight) &= \exp \left(10 \cdot \hat{eta}_1 \pm 1.96 \cdot 10 \cdot SE_{\hat{eta}_1}
ight) \ &= \exp \left(10 \cdot 0.056965 \pm 1.96 \cdot 10 \cdot 0.003204 \ &= (1.66, \ 1.88) \end{aligned}$$

Example: 10 year increase in age and Late Stage Diagnosis

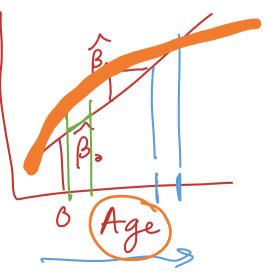
• What if we are interested in learning the OR corresponding to 10-year increase in age?

```
1 bc2 = bc %>% mutate(Age_c_10 = Age_c/10) / unit inc = 10 yr inc
2 bc_reg_10 = glm(Late_stage_diag ~ Age_c_10, data = bc2, family = binomial)
3 tidy(bc_reg_10, conf.int=T, exponentiate = T) %>% gt() %>% tab_options(table.font.s
4 fmt_number(decimals = 3)
```

term	estimate std.error		statistic p.value conf.low conf.high			
(Intercept)	0.372	0.023 -	-42.637	0.000	0.355	0.389
Age_c_10	1.768	0.032	17.780	0.000	1.661	1.883
C 0.57						

Last Note About Continuous Independent Variable

- Notice that the logistic regression model suggests that logit linear in the covariate
- The model implies the additional risk of late stage breast cancer diagnosis for a 40 year-old compared to a 30 year-old is the same as the additional risk of late stage breast cancer diagnosis for a 60 year-old compared to a 50-year-old
- This assumption may not be realistic
- To address this, we may consider using higher order terms (e.g., x^2/x^3 ,...) or other nonlinear transformation(e.g., log(x))
- Categorize the continuous variable may be another option



How do we get the odds for the intercept?

For $\exp(\widehat{eta}_0)$

• When X = 0, we have

$$logit(\widehat{\pi}(X=0)) = \widehat{\beta}_0 + \beta_1(0)$$

• Thus,

$$\widehat{\beta}_{0} = \operatorname{logit}(\widehat{\pi}(X))$$

$$\exp[\widehat{\beta}_{0}] = \exp[\operatorname{logit}(\widehat{\pi}(X))]$$

$$\exp[\widehat{\beta}_{0}] = \exp\left[\log\left(\frac{\widehat{\pi}(X)}{1 - \widehat{\pi}(X)}\right)\right]$$

$$\exp[\widehat{\beta}_{0}] = \frac{\widehat{\pi}(X)}{1 - \widehat{\pi}(X)}$$
Odds Men X = 0

Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

- 3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory variable.
- 4. Report the odds ratio using a table and/or a forest plot.

Coefficient Interpretation: Binary Independent Variable

- Independent variable x is a binary variable (x can take values: 0 or 1) Ty yes/No Alb
- We are fitting the simple logistic regression model:

logit $(\pi(X)) = \beta_0 + \beta_1 \cdot I(X = 1)$ r binary independent • The logit difference is β_1 for binary independent variable

- I(X = Yes) or I(X = B) r = 0 ref r = N• β_1 represents the change/difference in the logit for x=1 vs. x=0
- It will be much easier to understand if we can interpret the coefficient using odds ratio (OR)

Binary: How do we interpret the coefficient? (I)
• For individuals with
$$X = 0$$
: $X = 0$, $T(X = 1) = 0$
 $\log it (\pi(X = 0)) = \beta_0 + \beta_1 \times (0) = \beta_0$, $T(X = b) = 0$
• For individuals with $X = 1$: $X = b$, $X = a$,
 $\log it (\pi(X = 1)) = \beta_0 + \beta_1 \times (1) = \beta_0 + \beta_1$
• To solve for β_1 , we take the difference of the logits:
 $\log it (\pi(X = 1)) - \log it (\pi(X = 0)) = (\beta_0 + \beta_1) - (\beta_0) = \beta_1$

Binary: How do we interpret the coefficient? (II)

$$logit (\pi(X = 1)) - logit (\pi(X = 0)) = (\beta_0 + \beta_1) - (\beta_0) = \beta_1$$

$$\beta_1 = logit (\pi(X = 1)) - logit (\pi(X = 0))$$

$$\beta_1 = log \left(\frac{\pi(X = 1)}{1 - \pi(X = 1)}\right) - log \left(\frac{\pi(X = 0)}{1 - \pi(X = 0)}\right)$$

$$\beta_1 = log \left(\frac{\pi(X = 1)}{1 - \pi(X = 0)}\right)$$

$$\alpha(X = 0) = \frac{\pi(X = 1)}{1 - \pi(X = 1)} \quad \text{odds} \quad \text{oddsg} \leftarrow$$

$$\exp(\beta_1) = \frac{\pi(X = 0)}{1 - \pi(X = 0)} \quad \text{odds} \quad \text{oddsg} \leftarrow$$

Review of Odds Ratio

• Odds for a subject with X = 1:

$$oldsymbol{0} \operatorname{odds}_1 = rac{\pi(X=1)}{1-\pi(X=1)} iggrcell$$

• Odds for a subject with X = 0:

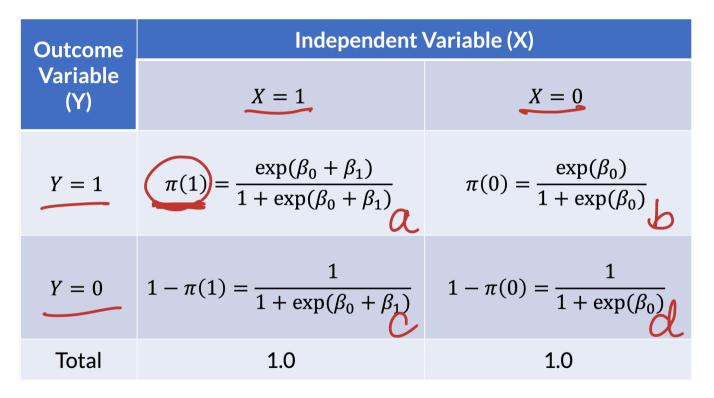
$$\mathbf{A} \quad \text{odds}_0 = \frac{\pi(X=0)}{1-\pi(X=0)}$$

$$\mathbf{O} \text{dds Ratio for } X = 1 \text{ vs. } X = 0 \text{:}$$

$$OR = \frac{\frac{\pi(X=1)}{1-\pi(X=1)}}{\frac{\pi(X=0)}{1-\pi(X=0)}}$$

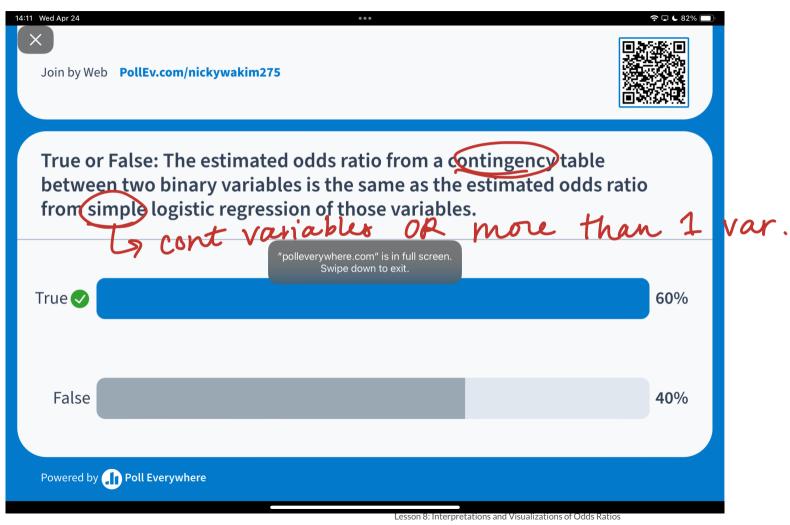
How does this relate to a 2x2 table?

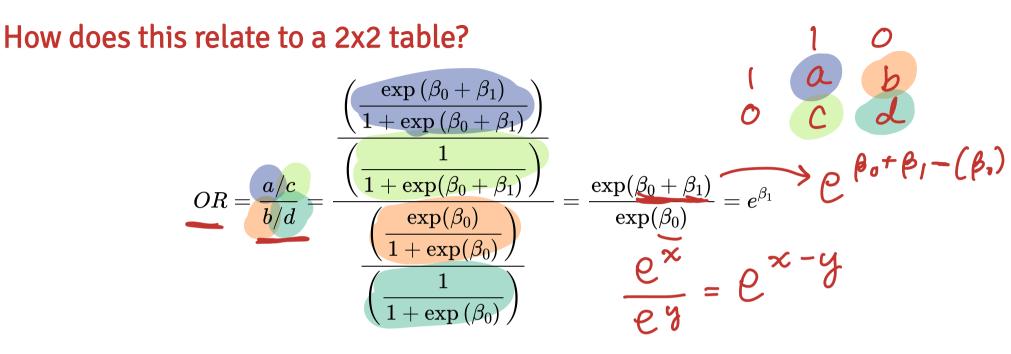
• 2x2 table with the respective logistic functions in each cell



Recall: $\pi(1) = \pi(X = 1)$ = P(Y = 1 | X = 1) $\pi(0) = \pi(X = 0)$ = P(Y = 1 | X = 0)

Poll Everywhere Question 2





- Simple relationship between coefficient and odds ratio is a primary reason why we report OR for categorical data analysis.
- For binary independent variable x, OR computed in logistic regression model is the same as OR computed using contingency table

Example: Binary age and Late Stage Diagnosis (I)

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to younger individuals (≤65 years old)?

- Two options to calculate this value:
 - **Option 1:** Calculate \widehat{OR} from 2x2 contingency table
 - Refer to Lesson 3 for this process
 - Option 2: Calculate \widehat{OR} from logistic regression

Needed steps for Option 2:

- 1. Fit the regression model
- 2. Transform the coefficients into odds ratios
- 3. Interpret the odds ratio 🧲

Example: Binary age and Late Stage Diagnosis (I)

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to younger individuals (≤65 years old)?

1. Fit the regression model

1 bc3 = bc %>% mutate(Age_binary = ifelse(Age > 65, 1, 0))
2 age_bin_glm = glm(Late_stage_diag ~ Age_binary, data = bc3, family = binomial)

Example: Binary age and Late Stage Diagnosis (I)

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to younger individuals (≤65 years old)?

2. Transform the coefficients into odds ratios

```
1 age_bin_tidy = tidy(age_bin_glm, conf.int=T, exponentiate = T)
2 age_bin_tidy %>% gt() %>%
3 tab_options(table.font.size = 35) %>%
4 fmt_number(decimals = 3)
```

term	estimate	std.error	statistic p.value conf.low conf.high				
(Intercept)			-39.608		0.280	0.315	
Age_binary	1.875	0.045	13.928	0.000	1.716	2.048	
Age_binary 1.875 0.045							

Poll Everywhere Question 3

14:19 Wed Apr 24		奈 교 ⊌ 80% 🔲
Join by Web PollEv.com/nickywakim275		
	e following interpretation of our \hat{OR} : The estimated odds of Ials over 65 years old is 1.87 (95% CI: (, 2.05)) times er.	
	0.29, higher	
	0.29, lower	
	1.72, higher	
	1.72, lower	
Powered by I Poll Everywher	e	

Example: Binary age and Late Stage Diagnosis (I)

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to younger individuals (≤65 years old)?

3. Interpret the odds ratio

The estimated odds of late stage breast cancer among individuals over 65 years old is 1.87 (95% CI: (1.72, 2.05)) times that of individuals 65 years or younger.

Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory variable.

4. Report the odds ratio using a table and/or a forest plot.

Coefficient Interpretation: Multi-group Categorical Variable

- Independent variable x is a multi-level categorical variable
- Let's say X takes values: a, b, c, or d
- We are fitting the simple logistic regression model:

$$logit(\pi(X)) = \underline{\beta_0} + \underline{\beta_1} \cdot \underline{I(X=b)} + \underline{\beta_2} \cdot I(X=c) + \underline{\beta_3} \cdot I(X=d)$$

- Where a is our reference group
- The logit difference is β_1 or by independent variable
 - eta_1 represents the change/difference in the logit for x=b vs. x=a
- It will be much easier to understand if we can interpret the coefficient using odds ratio (OR)

 β_3 : diff X = dvs. X = a

Coefficient Interpretation: Multi-group Categorical Variable

We are fitting the simple logistic regression model with reference group *a*:

$$\mathrm{logit}\left(\pi(X)
ight)=eta_{0}+eta_{1}\cdot I(X=b)+eta_{2}\cdot I(X=c)+eta_{3}\cdot I(X=d)$$

- eta_0 : the log-odds of event Y=1 for group a
- eta_1 : the difference in log-odds of event Y=1 comparing group b to group a
- eta_2 : the difference in log-odds of event Y=1 comparing group c to group a
- eta_3 : the difference in log-odds of event Y=1 comparing group d to group a

Multi-level categorical: How do we interpret the coefficient? (II)

$$\log \operatorname{it} (\pi(X = c)) - \log \operatorname{it} (\pi(X = a)) = (\beta_0 + \beta_1 \cdot 0 + \beta_2 \cdot 1 + \beta_3 \cdot 0) - (\beta_0 + \beta_1 \cdot 0 + \beta_2 \cdot 0 + \beta_3 \cdot 0) = \beta_2$$

$$\beta_2 = \log \left(\frac{\pi(X = c)}{1 - \pi(X = c)} \right) - \log \left(\frac{\pi(X = a)}{1 - \pi(X = a)} \right)$$

$$\beta_2 = \log \left(\frac{\frac{\pi(X = c)}{1 - \pi(X = a)}}{\frac{\pi(X = a)}{1 - \pi(X = a)}} \right)$$

$$\exp (\beta_2) = \frac{\frac{\pi(X = c)}{1 - \pi(X = a)}}{\frac{\pi(X = a)}{1 - \pi(X = a)}} \quad \text{odds}_{c}$$

Coefficient Interpretation: Multi-group Categorical Variable

We are fitting the simple logistic regression model with reference group *a*:

$$\mathrm{logit}\left(\pi(X)
ight)=eta_{0}+eta_{1}\cdot I(X=b)+eta_{2}\cdot I(X=c)+eta_{3}\cdot I(X=d)$$

- $\exp{(\beta_0)}$: the odds of event Y=1 for group a
- $\exp{(\beta_1)}$: the odds of event Y = 1 for group b is $\exp{(\beta_1)}$ times the odds of event Y = 1 for group a
- $\exp{(eta_2)}$: the odds of event Y=1 for group c is $\exp{(eta_2)}$ times the odds of event Y=1 for group a
- $\exp{(\beta_3)}$: the odds of event Y=1 for group d is $\exp{(\beta_3)}$ times the odds of event Y=1 for group a

How do we pick the reference group?

- The choice can be more apparent for multi-group categorical independent variables within studies
- For example, if we want to evaluate the association between clinical response and four treatments.
 - The treatment variable has 4 categories: "active treatment A", "active treatment B", "active treatment C" and "Placebo treatment"
 - The investigator is interested in comparing each of the three active treatment with the placebo treatment
 - Then the placebo treatment should be picked as the reference group

- Chose Non-Hispanic White individuals as reference group
- Underlying health disparities linked to racism in healthcare and in clinical studies
- There is evidence that white individuals receive a certain standard of care that is not paralleled for POC Mateo and Williams (2021)

S		Breast Cance			
	Race/Ethnicity	Early Stage	Late Stage	Total	
	Non-Hispanic White	5,321	1,980	7,301	
es	Non-Hispanic Black	683	357	1,040	
	Non-Hispanic Asian/Pacific Islander	556	234	790	
L	Hispanic-Latinx	575	271	846	
ſ	Non-Hispanic American Indian/Alaska Native	17	6	23	
	Total	7,152	2,848	10,000	

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals compared to Non-Hispanic White individuals?

Needed steps:

- 1. Fit the regression model
- 2. Transform the coefficients into odds ratios
- 3. Interpret the odds ratio

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals compared to Non-Hispanic White individuals?

1. Fit the regression model

1	<pre>RE_glm = glm(Late_stage_diag ~ Race_Ethnicity, data = bc,</pre>	
2	<pre>family = binomial)</pre>	

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals compared to Non-Hispanic White individuals?

2. Transform the coefficients into odds ratios

<pre>1 RE_tidy = tidy(RE_glm, conf.int=T, exponentiate = T) 2 RE_tidy %>% gt() %>% 3 tab_options(table.font.size = 35) %>% 4 fmt_number(decimals = 3)</pre>
2 RE_tidy %>% gt() %>%
<pre>1 RE_tidy = tidy(RE_glm, conf.int=T, exponentiate = T)</pre>

			imate std.error		statistic p.value conf.low conf.hig			
	(Intercept) Odds for NH White	0.372	0.026	-37.553	0.000	0.353	0.392	
ſ	Race_EthnicityHispanic-Latino	0.968	0.082	-0.398	0.691	0.822	1.135	
J	Race_EthnicityNH American Indian/Alaskan Native			-0.111	0.911	0.342	2.287	
	Race_EthnicityNH Asian/Pacific Islander	1.131	0.082	1.497	0.134	0.961	1.327	
	Race_EthnicityNH Black	1.405	0.070	4.826	0.000	1.223	1.611	

Odds ratio from logistic regression

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals compared to Non-Hispanic White individuals?

3. Interpret the odds ratio

The estimated odds of late stage breast cancer among Non-Hispanic Asian/Pacific Islander individuals is 1.13 (95% CI: (0.96, 1.33)) times that of Non-Hispanic White individuals.

What if you want to compare other groups?

- What if we want to estimate OR comparing Non-Hispanic Asian Pacific Islander to Non-Hispanic Black individuals?
- **Option 1:** Change reference group and refit the model (maybe the easiest option)
- Option 2: Estimate OR using fitted coefficients ($\hat{\beta}$'s) in the current model:

$$egin{aligned} \log\left(OR(ext{NH API}, ext{NH B})
ight) &= \log \mathrm{it}\left(\pi\left(X = ext{NH API}
ight)
ight) - \log \mathrm{it}\left(\pi\left(X = ext{NH B}
ight)
ight) \ &= \left[eta_0 + eta_3 \cdot 1
ight] - \left[eta_0 + eta_4 \cdot 1
ight] \ \log\left(\widehat{OR}(ext{NH API}, ext{NH B})
ight) &= \widehat{eta}_3 - \widehat{eta}_4 \ \widehat{OR}(ext{NH API}, ext{NH B}) &= \exp\left(\widehat{eta}_3 - \widehat{eta}_4
ight) \end{aligned}$$

Poll Everywhere Question 5

What if you want to compare other groups? Option 1

1 bc3 = bc \$> \$
2 mutate(Race_Ethnicity = relevel(Race_Ethnicity, ref = "NH Black")
3 RE_glm2 = glm(Late_stage_diag ~ Race_Ethnicity, data = bc3,
4 family = binomial)
<pre>5 tidy(RE_glm2, conf.int=T, exponentiate = T) %>% gt() %>%</pre>
<pre>6 tab_options(table.font.size = 38) %>%</pre>
7 <pre>fmt_number(decimals = 3)</pre>

term	estimate s	std.error statistic p.value	conf.low c	onf.high
(Intercept)	0.523	0.065 -9.934 0.000	0.459	0.594
Race_EthnicityNH White	0.712	0.070 -4.826 0.000	0.621	0.818
Race_EthnicityHispanic-Latino	0.689	0.102 -3.664 0.000	0.564	0.840
Race_EthnicityNH American Indian/Alaskan Native	e 0.675	0.479 -0.819 0.413	0.242	1.641
Race_EthnicityNH Asian/Pacific Islander	0.805	0.102 –2.131 0.033	0.659	0.982

Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

- 2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.
- 3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory variable.

4. Report the odds ratio using a table and/or a forest plot.

How to present odds ratios: Table

• tbl_regression() in the gtsummary package is helpful for presenting the odds ratios in a clean way

	Characteristic	\mathbf{OR}^{\prime}	95% Cl ⁷	p-value
>	Race			
	NH White	—	—	
	Hispanic-Latino	0.97	0.82, 1.14	0.7
	NH American Indian/Alaskan Native	0.95	0.34, 2.29	>0.9
	NH Asian/Pacific Islander	1.13	0.96, 1.33	0.13
	NH Black	1.40	1.22, 1.61	<0.001
	¹ OR = Odds Ratio, <u>CI</u> = Confidence Interva	al		

How to present odds ratios: Forest Plot Setup

- 1 library(broom.helpers)
- 2 RE_tidy = tidy_and_attach(RE_glm, conf.int=T, exponentiate = T) %>%
- 3 tidy_remove_intercept() %>%
- 4 tidy_add_reference_rows() %>% tidy_add_estimate_to_reference_rows() %>%

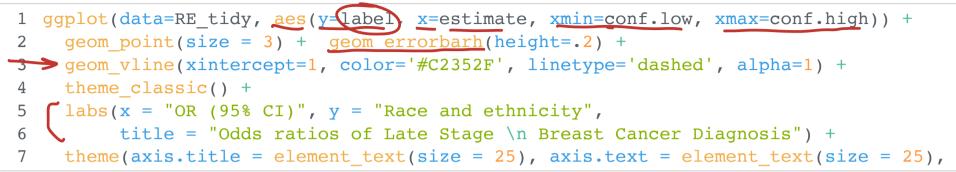
```
5 tidy_add_term_labels()
```

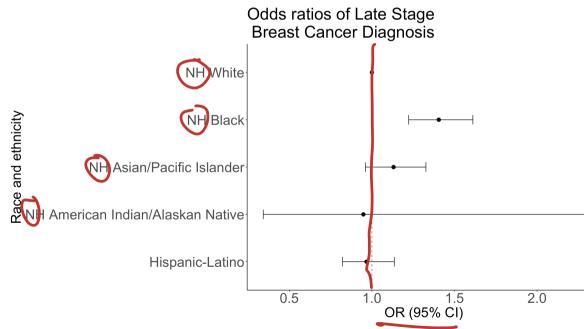
6 glimpse(RE_tidy)

Rows: 5

```
Columns: 16
     $ term
                                                     <chr> "Race EthnicityNH White", "Race EthnicityHispanic-Latin...
                                                     <chr> "Race Ethnicity", "Race Ethnicity", "Race Ethnicity", "...
     $ variable
    🕏 var label
                                                     <chr> "Race Ethnicity", "Race Ethnicity", "Race Ethnicity", "...
     $ var class
                                                     <chr> "factor", "factor, "
     $ var type
                                                     <chr> "categorical", "categorical", "categorical", "categoric...
     $ var nlevels
                                                   <int> 5, 5, 5, 5, 5
                                                     <chr> "contr.treatment", "contr.treatment", "contr.treatment"...
     $ contrasts
     $ contrasts type <chr> "treatment", "treatment", "treatment", "treatment", "tr...
     $ reference row
                                                     <lql> TRUE, FALSE, FALSE, FALSE, FALSE
                                                     <chr> "NH White", "Hispanic-Latino", "NH American Indian/Alas...
🔫 label
     estimate
                                                     <dbl> 1.0000000, 0.9678002, 0.9484848, 1.1310170, 1.4046741
                                                     <dbl> NA, 0.08224948, 0.47558680, 0.08224988, 0.07041472
     $ std.error
     $ statistic
                                                     <dbl> NA, -0.3979312, -0.1112089, 1.4968682, 4.8257715
                                                     <dbl> NA, 6.906809e-01, 9.114507e-01, 1.344276e-01, 1.394623e...
     $ p.value
          conf.low
                                                     <dbl> NA, 0.8223138, 0.3417844, 0.9612074, 1.2226824
          conf.high
                                                     <dbl> NA, 1.135332, 2.286596, 1.327092, 1.611466
```

How to present odds ratios: Forest Plot





References

- Mateo, Camila M., and David R. Williams. 2021. "Racism: A Fundamental Driver of Racial Disparities in Health-Care Quality." *Nature Reviews Disease Primers* 7 (1): 1–2. https://doi.org/10.1038/s41572-021-00258-1.
- Yedjou, Clement G., Jennifer N. Sims, Lucio Miele, Felicite Noubissi, Leroy Lowe, Duber D. Fonseca, Richard A. Alo, Marinelle Payton, and Paul B. Tchounwou. 2019. "Health and Racial Disparity in Breast Cancer." *Advances in Experimental Medicine and Biology* 1152: 31–49. https://doi.org/10.1007/978-3-030-20301-6_3.

Lesson 8: Interpretations and Visualizations of Odds Ratios