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Last time to this time

e Used the Wald test and Wald 95% confidence interval to interpret coefficients in a fitted model

e This time: Interpret using odds ratio

e
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Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.
2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory
variable.
4. Report the odds ratio using a table and/or a forest plot.

Lesson 8: Interpretations and Visualizations of Odds Ratios



So far we've looked at the association using the log-odds scale

For @ population)simple logistic regression model For ouimple logistic regression model with a

with a continuous predictor continuous predictor 0«// deFa
logit(n(X)) = fo+ 51+ X < logit(#(X)) = Bo + B - X
’ .ﬁ.(.).: log-odds when Xis 0 . Boi estimated log-odds of Y = 1 when Xis 0.
e [3q:increase in log-odds for every 1 unit increase in S —
X o B1:estimated increase in log-odds of Y = 1 for

every 1 unit increase in X

e Can use expected instead of estimated
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Example: From last class

1 bc reg = (Late stage diag ~ Age c, data = bc, family = binomial)
2 (bc_reg, conf.int=T) %>% () %>% (table.font.size = ) $>%
3 (decimals = 3)

term estimate btd.error statistic p.value conf.low conf.high
(Intercept] -0.989| 0.023 -42.637 0.000 -1.035 -0.944
Age_c

0.057/ 0.003 17.780 0.000 0.051 0.063

¢ For our fitted simple logistic regression model with age as a predictor
—
logit(7w(Age®)) = —0. . - Age©
ogi (7;( 9€°)) 0.989 + 0.057 - Age
~ e o.la/t wWhor
* Bo: The estimated log-odds is -0.989 when age isars (95% Cl:-1.035,-0.944

i

A@A°= 0
)

AN

e 31: The estimated increase in log-odds is 0.057 for every 1 year increase in age (95% Cl: 0.051, 0.063).
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Poll Everywhere Question 1

13:20 Wed Apr 24

Join by Web  PollEv.com/nickywakim275

How do we transform our coefficient estimates to get the estimated
odds ratios?

No transformation needed 0%

Take the difference between the estimates 9%
TEEEe——E—

Take the log of the estimates 27%
-

Take the exponential of the estimates @ — 64%

Powered by Q Poll Everywhere
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We typically interpret our results using odds ratios

For our fitted simple logistic regression model with a continuous predictor
logit (7(X)) = o+ B1 (X))

e How do we go from interpretations of 30 and Bl using log odds to odds ratios?
L — =]

¢ We will need to take the exponential of our model:

. exp(Bo): expected odds that Y = 1 when Xiis O. >
= exp(Bl ) expected odds ratio that Y = 1 for every 1 unit increase in X DN
¢ Important distinction: 5" £ P

A e
= We take tho find our predicted probability T = - .

-_— o
= We take the exponential to interpret the odds/odds ratios { T C

- / g{w/

O/f\lx-‘f’/ =
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Intro/Recap of Interpreting Fitted Model

e Interpret coefficients from fitted logistic regression model

= Goodness-of-fit of model should be assessed before summarizing findings (have not covered yet)
—_— —— T :

» |n this lecture: assume model fits data well

e The interpretation of the coefficients involves two issues:
= The functional relationship between the dependent variable and the independent variable (I'

T

. \ . .
= Unit of change for the independent variable
E

e We will learn the interpretation for

= Binary independent variable

= Categorical independent variable with multiple groups

o We looked at this for our race and ethnicity variable

= Continuous independent variable
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Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory
variable.

4. Report the odds ratio using a table and/or a forest plot.
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Coefficient interpretation: Continuous Independent Variable

¢ For simplicity, we assume the linear relationship between logit and continuous variable x

e Again using simple logistic regression model to illustrate the interpretation of Bfor a continuous variable x
logit(#(X)) = Bo+ B - X

¢ The estimated slope coefficient, Bl’ is the expected change in the log odds f@ T
i i
= Additional attention should be paid to picking a meaningful units of changeinx
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(T

How do we get the odds ratio for X's coefﬁcient? YL - \oQ

e
For exp(31) AX 1 /'LUL e Thus, 6 L/ﬂ)
. \SNe co:pareX { znd X —QL-L B1 = logit(F(X = z + 1)) — logit(7(X = z))
e Sowe have 1 %(X_:c+1) o ( %(X:a:) )
logit(ﬁ(){_:_az))zgg—k/ﬁ\l-w B].—T(‘(XZLB—F].))@ . 1-7(X =)
de_, (X =xz+1) \06 [0.) - IOG(,b/
an log 1-7(X=z+1) — \0%(’>
logit(F(X =z + 1)) = Bo+ 1 - (z + 1) (X = z)
1—7(X =2

ox ﬂ %( OddSX:;,;_H )]
logit(7(X Ologit(7(X = o) R /ﬁ oddsx—,

SRt Torhe) o] - S

/\ .
OR Lor 7 umt tnc of X
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Example: Interpretation of Age Coefficient/OR

s 0.057, suggesting that one year increase in age is associated with 0.057 increase in log odds of receiving a
ate stage breast cancer diagnosis

—— —

o * exp (Bl } i suggesting that one year increase in age is associated with 1.06 times the odds of receiving a

late stage breast cancer diagnosis

e For continuous covariates in logistic regression model, it is helpful trom the'%ratm and

multiply by 100 to obtain the percentage change in odds for 1-unit increase.

The estimated OR for age is 1.06, suggestingth% T-year increase in age is associated with a 6% increase in
the predicted odds of late stage diagnosis in the patient population

0.06 — b4
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Example: Age and Late Stage Diagnosis (1/5)

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for
every 1 year increase in age.
Needed steps:

1. Fit the regression model -
2. Transform the coefficients into odds ratios <—

3. Interpret the odds ratio -
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Example: Age and Late Stage Diagnosis (2/5)

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for
every 1 year increase in age.

1. Fit the regression model

1 bc reg (Late stage diag Age c, data = bc, family = binomial)
_ _ _ — oc
2 (bc_regq) —

Call:
glm(formula = Late stage diag ~ Age c, family = binomial, data = bc)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.989422 0.023205 -42.64 <2e-16 ***
Age c 0.056965 0.003204 17.78 <2e-16 ***

Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '."' 0.1 " " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 11861 on 9999 degxeestofiidzeedomionsofoddsratos



Residual deviance: 11510 on 9998 degrees of freedom
AIC: 11514

Number of Fisher Scoring iterations: 4
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Example: Age and Late Stage Diagnosis (3/5)

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for

every 1year increase in age.

AN
N

(gl p”
2. Transform the coefficients into odds ratios ¢ Option 1: e e
9lm oufp Lt //
1 tidy bc reg = (bc_reg, conf.int=T, exponentiate = T)
— . — =
2 tidy bc reg %>% () %>% (table.font.size = ) %>%
3 (decimals = 3) N\ -
™ N n D ~ 1 nK V.- W )
UK " N AP U |
term estimate std.error statistic p.value conf.low conf.high
(Intercept)

0.372 0.023 -42.637 0.000 0.355 0.389
Age_c 1.059 0.003 17.780 0.000 1.052 1.065

ﬂel tidy bc regSconf.low # I prefer tidy() bc now I can grab each component
[1] 0.3551931 1.0520321
—_——
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Example: Age and Late Stage Diagnosis (4/5)

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for
every 1 year increase in age.

2. Transform the coefficients into odds ratios ¢ Option 2:

1 (bc_reg) # Cannot grab each component in this
Logistic regression predicting Late stage diag : 1 vs 0

OR{I5%CI) P(Wald's test) P(LR-test)
Age c (cont. var.)(l.05,1.07) < 0.001 < 0.001
~—

Log-likelihood = -5754.8442
No. of observations = 10000
AIC value = 11513.6884
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Poll Everywhere Question 1

13:54 Wed Apr 24 T L ¢ 86% m

Join by Web PollEv.com/nickywakim275

Please fill in the blanks for the following interpretation of our OR:A...

10 year, 1.06 10%

10 year, 0.06 0%

1year, 0.06

Powered by @ Poll Everywhere
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Example: Age and Late Stage Diagnosis (5/5)

Compute the estimate and 95% confidence interval for odds ratio for late stage breast cancer diagnosis for
every 1 year increase in age.

3. Interpret the odds ratio G 7
{]

. . . . o : .
For every one year increase in age, there is an estimated 5.86% increase in theWodds of late stage

breast cancer diagnosis (95% Cl: 52%, 53%). T “ —

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Transformations of continuous variable to make more interpretable

e Sometimes a change in “1” unit may not be considered clinically interesting

= For example, a 1 year increase in age or a 1 mm Hg increase in systolic blood pressure may be too small for a
———
meaningful change in log odds

= Instead, we may be interested to find out the log odds change for a inw age or

in systolic blood pressure

= Onthe other hand, if the range of_x‘is small (say 0-1), than a change in 1 unit of_zc_ is too large to be meaningful

—_—

* We should be able to compute and interpret coefficients for a continuous independent covariate x for an
arbitrary change n|ts inT

0.] inc
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Transformations of continuous variable to make more interpretable

e The estimated log odds ratio for a change of c units in x can be obtained from

i+ o)~ () )

. @(c) — exp (B

==

* The 95% Clfor OR(c) is:

Q v )
( S

e The cis chosen to be a clinically meaningful unit change in x
e The value of ¢ should be clearly specified in all tables and calculations

= Because the estimated OR and the corresponding Cl depends on the choice of ¢ value

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: 10 year increase in age and Late Stage Diagnosis

e What if we are interested in learning the OR corresponding to 10-year increase in age?

1 bc reg = (Late stage diag Age c¢) data = bc, family = binomial)
2 (bc_reg, conf.int=T) %>% $>% (table.font.size = &>%
3 (decimals = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -0.989 0.023 -42.637 0.000 -1.035 -0.944

Age_c 0.003 17.780 0.000 0.051 0.063

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: 10 year increase in age and Late Stage Diagnosis

e What if we are interested in learning the OR corresponding to 10-year increase in age?

OR (10) = exp (10 - Bl) — exp(0.56965)= 1.767

-_—

e The 95% Clfor OR (10) is:

OR (10) = exp (10- 3; £ 1.96 - 10 - SE.
By

— exp (10 - 0.056965 + 1.96 - 10 - 0.003204)
— (1.66, 1.88)
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Example: 10 year increase in age and Late Stage Diagnosis

e What if we are interested in learning the OR corresponding to 10-year increase in age?

bc2 = bc %>% (Age c 10 =@ Funit e = ”

1
2 bc reg 10 = (Late_stage diag ~ Age c 10, data = bc2, family = binomial)
3 (bc_reg 10, conf.int=T, exponentiate = T) %>% () %>% (table.font.s
4 (decimals = 3)
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 0.372 0.023 -42.637 0.000 0.355 0.389
Age_c_10 1.768 0.032 17.780 0.000 1.661 1.883

0.7

€
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Last Note About Continuous Independent Variable

¢ Notice that the Ioglst|c regression model suggests th¢ @ linear in the covariate

e The model |mpI|es the additional risk of late stage breast cancer diagnosis for a 40 year-old compared to a 30

year-old is the same as the additional risk of late stage breast cancer diagnosis for a 60 year-old compared to a
50-year-old

e This assumption may not be realistic

e To address this, we m nsider using higher order terms (e. ..) or other nonlinear
transformation(e.g/log(x

e Categorize the continuous variable may be another option

Lesson 8: Interpretations and Visualizations of Odds Ratios
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How do we get the odds for the intercept?
For exp(/ﬁ\o)

—

e When X = 0, we have

logit(7(X = 0)) = By + p,
x
e Thus,

Bo = logit(7(X
exp BO = exp :logit(%(X ))]

- enfe( 5
exp|Bo| = exp |log "

R
L

odds uhwn X=0
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Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory
variable.

4. Report the odds ratio using a table and/or a forest plot.

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Coefficient Interpretation: Binary Independent Variable
¢ Independent variable x is a binary variable (x can take values: O or 1)
/N!
f,S
re\‘ <0

logit ((X)) = By + B - I(X. = 1) k(9

— | s

 The logit difference is 3 for binary independent variable K) T- ( X= YC'S\)) oy I ( X~ B>

— re
= 31 represents the change/dlfference inthe logitforx = 1vs.x = 0 ref= A

p— = .
e |t will be much easier to understand if we can interpret the coefficient using odds ratio (OR)

e We are fitting the simple logistic regression model:

Lesson 8: Interpretations and Visualizations of Odds Ratios 30



Binary: How do we interpret the coefficient? (l)

. Formdmdualswﬂh_j X o [ I (X‘:l) = 0
logit —prmx@=p T(X=b)= O
e Forindividuals with.Xilz )( = b XK= o

logit (7(X =1)) = Bo+ B1 x (LL.= Bo + B
R > T(X=1)-=1

* To solve for 31, we take the difference of the logits:
e _ pT(Xx=b)=l
logit (7(X = 1)) — logit (7(X = 0)) = (Bo + B1) — (Bo) =




Binary: How do we interpret the coefficient? (Il)

logit (7(X = 1)) — logit (7(X = 0)) = (Bo + B1) — (bo) = b1

B1 = logit (mr(X = 1)) — logit (W(X:(E)) )
(X =1) (X =0
ﬂl:“’g(l—ﬂhn)‘lOg(l—w(sz)
(X =1)
l1-7n(X=1)
(X =0)
1—m(X=0)
7r()(=1)]¢;mlo‘.$tL oddsg<—-
l-m(X=1)J —
)= —) R

=aX=0 gdd, oddss&

B1 = log
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Review of Odds Ratio

¢ Odds for a subject with X = 1:

8 Oddsl_l—w ]
cf\

e Odds for a subject with X =

P\ OddSo =

e Odds Ratio forX =1vs. X =

[ —

(X =1)
l1-m(X=1) 6
(X = 0)
1—7(X=0) P‘

OR =
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How does this relate to a 2x2 table?

e 2x2 table with the respective logistic functions in each cell Recall:

: n(l)=n(X=1)
Outcome Independent Variable (X) =P(Y=1|X =1)

Variable m(0) =X =0)

\% H=1 X=0 —P(Y =1|X = 0)
_ _exp(Bo + B1) _ exp(Bo)
r=t “TResGut ), ™0 = T e (Bo) b
Y=0 1-m)= ! | - 7(0) = ——
ST T T T exp(B + ﬁ& Ty exp(ﬁo()i

Total 1.0 1.0
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Poll Everywhere Question 2

14:11

Wed Apr 24

Join by Web  PollEv.com/nickywakim275

True or False: The estimated odds ratio from a table
between two binary variables is the same as the estimated odds ratio
fron(simpl9 logistic regression of those variables.

abls 0B o tham 1

"polleverywhere.com” is in full screen.
Swipe down to exit.

Powered by 0 Poll Everywhere
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How does this relate to a 2x2 table?

( exp (Bo + B1) )
1+ exp (8o + B1)

1 of - 1)
OR ajc (1+exp(50+ﬁ1)) _ exp(By+ B1) T 6 P J (@

b ( exp(6o) ) ~ ()
1+e>1cp(50) ex . e.,c _(2_
(1+exp</so>> 9

e Simple relationship between coefficient and odds ratio is a primary reason why we report OR for categorical
data analysis.

¢ For binary independent variable x, OR computed in logistic regression model is the same as OR computed
using contingency table
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Example: Binary age and Late Stage Diagnosis ()

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to
younger individuals (<65 years old)?

e Two options to calculate this value:

= Option 1: Calculate 5}\2 from 2x2 contingency table

——
o Refer tr this process

= Option 2: Calculate 5R from logistic regression
P

prav\ﬁa

Needed steps for Option 2:

1. Fit the regression model
2. Transform the coefficients into odds ratios
3. Interpret the odds ratio &—

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: Binary age and Late Stage Diagnosis ()

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to
younger individuals (<65 years old)?

1. Fit the regression model

1 bec3 = bc %>% (Age binary = (Age > , 1, 0))
2 age bin glm = (Late stage diag ~ Age binary, data = bc3, family = binomial)

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: Binary age and Late Stage Diagnosis ()

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to
younger individuals (<65 years old)?

2. Transform the coefficients into odds ratios

1 age bin tidy = (age bin glm, conf.int=T, exponentiate = T)
- . — . — — - V
2 age bin tidy %>3 () %>%
3 (table.font.size = ) %>%
4 (decimals = 3)
term estimate std.error statistic p.value conf.low conf.high

(Intercept)  0.297 0.031 -39.608 0.000 0.280 0.315

Age_binary .045 13.928 0.000 1.716 2.048
265 v

A(af‘,)/

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Poll Everywhere Question 3

14:19 Wed Apr 24

JoinbyWeb  PollEv.com/nickywakim275

T Q¢ 80% @M

Please fill in the blanks for the following interpretation of our OR: The estimated odds of late stage

breast cancer among individuals over 65 years old is 1.87 (95% Cl: (______,2.05)) timesf__¢ than
individuals 65 years or younger. 0

Powered by @ Poll Everywhere

0.29, higher

0.29, lower

1.72, higher

1.72, lower

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: Binary age and Late Stage Diagnosis (|)

What is the odds ratio of late stage breast cancer diagnosis for older individuals (>65 years old) compared to
younger individuals (<65 years old)?

3. Interpret the odds ratio

The estimated odds of late stage breast cancer among individuals over 65 years old is (95% Cl: (1.72,2.05))

times that of individuals 65 years or younger.
T e

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.

2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory

variable.

4. Report the odds ratio using a table and/or a forest plot.

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Coefficient Interpretation: Multi-group Categorical Variable

Independent variable x is a multi-level categorical variable

Let’s saL)_g takes values: a, b, c, or d

We are fitting the simple logistic regression model:

logit (m(X)) = Bo+ B1- I(X =b) +Bo- I(X =c)+ B3 - I(X =d
¥g((4))m~( ) + B2~ I( )+ B3 I( )

= Where a is our reference group

The logit difference iorém,g independent variable P 2 : d,("l".‘l[ X = ’L

= 3 represents the change/difference in the logit forx = bvs.x = a V§. X =X

It will be much easier to understand if we can interpret the coefficient using odds ratio (OR)

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Coefficient Interpretation: Multi-group Categorical Variable

We are fitting the simple logistic regression model with reference group a:

logit (m(X)) = By + B1 - I(X = b) + B - I(X = ¢) + B3~ I(X = d)

e [y:the log-odds of event Y = 1 for group a

» (31: the difference in log-odds of event Y = 1 comparing groug

* [y the difference in log-odds of event Y = 1 comparing group

* (5: the difference in log-odds of event Y = 1 comparing groug

Lesson 8: Interpretations and Visualizations of Odds Ratios

45



Multi-level categorical: How do we interpret the coefficient? (ll)

logit (m(X <)) — logit (n(X =(a))) = (Bo+ B0+ B 1+ B3 0) = (Bo+ B0+ B2 0+ By - 0) = B
By = logit (m(X = ¢)) — logit (z (X = a))

oo (XY g (B2

(X =¢)
By = log 1_7r()i:c)
(X = a) _\
1—7(X =a) ﬂa'F\(’c
mX =c
1_(71.(X _)c) Oddsc/ko(

exp (B2) = "X =
1—7r(X—a OAO{S&




Coefficient Interpretation: Multi-group Categorical Variable

We are fitting the simple logistic regression model with reference group a:

logit (m(X)) = By + B1 - I(X = b) + B - I(X = ¢) + B3~ I(X = d)

exp (Bp): the odds of event Y = 1 for group a
exp (61 ): theprdds of eventY = 1 for group b |s t_mes the odds of event Y = 1 for group a

P ——

exp (B2): the odds of event Y = 1 for group cis exp (32) times the odds of event Y = 1 for group a

exp (3): the odds of event Y = 1 for group d is exp (f3) times the odds of event Y = 1 for group a
| ———)

Lesson 8: Interpretations and Visualizations of Odds Ratios



How do we pick the reference group?

e The choice can be more apparent for multi-group categorical independent variables within studies
e For example, if we want to evaluate the association between clinical response and four treatments.

= The treatment variable has 4 categories: “active treatment A", “active treatment B”, “active treatment C” and
“Placebo treatment”

= Theinvestigator is interested in comparing each of the three active treatment with the placebo treatment
= Then the placebo treatment should be picked as the reference group

Lesson 8: Interpretations and Visualizations of Odds Ratios 48



Example: Late stage diagnosis and race and ethnicity

e Chose Non-Hispanic White individuals as
reference group

e Underlying health disparities linked to
racism in healthcare and in clinical studies

e Thereis evidence that white individuals
receive a certain standard of care that is
not paralleled for POC Mateo and
Williams (2021)

Breast Cancer Diagnosis

Race/Ethnicity Early Stage | Late Stage Total

Non-Hispanic White 5,321 1,980 7,301

Non-Hispanic Black 683 357 1,040

Non-Hispanic 556 234 790
Asian/Pacific Islander

R Hispanic-Latinx 575 271 846

) Non-Hispanic American @ CG_ 23
Indian/Alaska Native

) Total 7,152 2,848 10,000

SE

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: Late stage diagnosis and race and ethnicity

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals
compared to Non-Hispanic White individuals? —

—

Needed steps:

1. Fit the regression model
2. Transform the coefficients into odds ratios

3. Interpret the odds ratio

Lesson 8: Interpretations and Visualizations of Odds Ratios



Example: Late stage diagnosis and race and ethnicity

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals
compared to Non-Hispanic White individuals?

1. Fit the regression model

1 RE glm = (Late stage diag ~ Race Ethnicity, data = bc,
2 family = binomial)

Lesson 8: Interpretations and Visualizations of Odds Ratios
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Example: Late stage diagnosis and race and ethnicity

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals

compared to Non-Hispanic White individuals?

2. Transform the coefficients into odds ratios

1
2
3
4

RE tidy = (RE_glm, conf.int=T, exponentiate = T)

RE tidy %>% () %>%

(table.font.size = ) $>%
(decimals = 3) _)

term estimate std.error

intercept) 0l s Ty NH Whi 0.372 0.026 -

Race_EthnicityHispanic-Latino 0.968 0.082
Race_EthnicityNH American Indian/Alaskan Native 0.948 0.476

Race_EthnicityNH Asian/Pacific Islander 0.082

Race_EthnicityNH Black 1.405 0.070

Lesson 8: Interpretations and Visualizations of Odds Ratios

statistic p.value conf.low conf.high

37.553 0.000
-0.398 0.691
-0.111 0.911
1.497 0.134
4.826 0.000

0.353
0.822
0.342
0.961
1.223

0.392
1.135
2.287
1.327
1.611
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Example: Late stage diagnosis and race and ethnicity

What is the odds ratio of late stage breast cancer diagnosis for Non-Hispanic Asian/Pacific Islander individuals
compared to Non-Hispanic White individuals?

3. Interpret the odds ratio
The estimated odds of late stage breast cancer among Non-Hispanic Asian/Pacific Islander individuals is 1.13

(95% CI: (0.96, 1.33)) times that of Non-Hispanic White individuals.

P
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What if you want to compare other groups?

e What if we want to estimate OR comparing Non-Hispanic Asian Pacific Islander to Non-Hispanic Black
individuals?

. Change reference group and refit the model (maybe the easiest option)

e Option 2: Estimate OR usingjtted coefficients (B’s) in the current model:

log (OR(NH API, NH B)) = logit (7 (X = NH API)) — logit (7 (X = NH B))
= [Bo+Bs-1] — [Bo+ Ba- 1]
log (5}\2(NH APL NH B)) — Bs— B,

OR(NH API,NH B) = exp ( Bs — Bu)
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Poll Everywhere Question 5
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What if you want to compare other groups? Option 1

1 be3 = bc %>%
2 (Race Ethnicity = (Race Ethnicity,{ref = "NH Black"pﬁ
_ . _ <

_?RE_glmZ = (Late _stage diag ~ Race Ethnicity, data — pcs,
family = binomial)

5 (RE_glm2, conf.int=T, exponentiate = T) %>% () %>%

6 (table.font.size = ) %>%

7 (decimals = 3)
term estimate std.error statistic p.value conf.low conf.high
(Intercept) 0.523 0.065-9.934 0.000 0.459 0.594
Race_EthnicityNH White 0.712 0.070 -4.826 0.000 0.621 0.818
Race_EthnicityHispanic-Latino 0.689 0.102 -3.664 0.000 0.564 0.840

Race_EthnicityNH American Indian/Alaskan Native 0.675 0.479 -0.819 0.413 0.242 1.641
Race_EthnicityNH Asian/Pacific Islander 0.805 0.102 -2.131 0.033 0.659 0.982
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Learning Objectives

1. Interpret odds ratios from fitted simple logistic regression model for a continuous explanatory variable.
2. Interpret odds ratios from fitted simple logistic regression model for a binary explanatory variable.

3. Interpret odds ratios from fitted simple logistic regression model for a multi-level categorical explanatory
variable.

4. Report the odds ratio using a table and/or a forest plot.
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How to present odds ratios: Table

. in the package is helpful for presenting the odds ratios in a clean way

— L —

1 (gtsummary)

2 (‘RE_glm] exponentiate = TRUE) %>%

= () $>% # allows us to use tab options()

—S (table.font.size = )

Characteristic OR' 95%Cl’ p-value
— Race/Ethnicity

NH White — —
Hispanic-Latino 0.97 0.82,114 0.7
NH American Indian/Alaskan Native 0.95 0.34,2.29 >0.9
N__I—_IAsian/Pacific Islander 113 0.96,1.33 013
.llll_—l Black 140 1.22,1.61 <0.001

"OR = Odds Ratio, Cl = Confidence Interval
/ .
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How to present odds ratios: Forest Plo @’-‘

e

(broom.helpers)

1
2 RE tidy
3
4
5
6 (RE_tidy)
Rows: 5
Columns: 16
S term <chr>
S variable <chr>
-—J;S var label <chr>
$ var class <chr>
$ var type <chr>
$ var nlevels <int>
S contrasts <chr>
$ contrasts_type <chr>
$ reference row <lgl>
38 label <chr>
——» estimate <dbl>
S std.error <dbl>
S statistic <dbl>
$ p.value <dbl>
$ conf.low <dbl>
(:;$ conf.high <dbl>

(RE_glm, conf.int=T, exponentiate = T)
()
()
()

"Race EthnicityNH White", "Race EthnicityHispanic-Latin..

"Race Ethnicity", "Race Ethnicity", "Race Ethnicity",
"Race Ethnicity", "Race Ethnicity", "Race Ethnicity",
"factor", "factor", "factor", "factor", "factor"

"categorical", "categorical", "categorical", "categoric..

5, 5, 5, 5, 5

"contr.treatment", "contr.treatment", "contr.treatment"..
"treatment", "treatment", "treatment", "treatment", "tr..

TRUE, FALSE, FALSE, FALSE, FALSE

"NH White", "Hispanic-Latino", "NH American Indian/Alas..

1.0000000, 0.9678002, 0.9484848, 1.1310170, 1.4046741
NA, 0.08224948, 0.47558680, 0.08224988, 0.07041472
NA, -0.3979312, -0.1112089, 1.4968682, 4.8257715

NA, 6.906809e-01, 9.114507e-01, 1.344276e-01, 1.394623e..

NA, 0.8223138, 0.3417844, 0.9612074, 1.2226824
NA, 1.135332, 2.286596, 1.327092, 1.611466
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How to present odds ratios: Forest Plot

1 (data=RE_tidy, \_( x=estimate, xmin=conf.low, xmax=conf.high)) +
2 (size = 3) + (height=.2) +
-_> (xintercept=1, color='#C2352F', linetype='dashed', alpha=1) +
4 () +
5 ( (x = "OR (95% CI)", y = "Race and ethnicity",
6 title = "Odds ratios of Late Stage \n Breast Cancer Diagnosis") +
7 (axis.title = (size = 25), axis.text = (size = 25),

Odds ratios of Late Stage
Breast Cancer Diagnosis

|
@/\/hite

@mack (S

@Asian/Pacific Islander H——]

Rgie and ethnicity

American Indian/Alaskan Native| | . I

Hispanic-Latino }—g%

0.5 1.0 2.0
OR (95% CI)
e ——
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