Lesson 11: Interactions

Nicky Wakim 2024-05-08

Lesson 11: Interactions

Learning Objectives

- 1. Connect understanding of confounding and interactions from linear regression to logistic regression.
- 2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but not effect modifier, or is an effect modifier.
- 3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds ratios.

Learning Objectives

1. Connect understanding of confounding and interactions from linear regression to logistic regression.

- 2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but not effect modifier, or is an effect modifier.
- 3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds ratios.

Revisit from 512: What is a confounder?

- A confounding variable, or **confounder**, is a factor/variable that wholly or partially accounts for the observed effect of the risk factor on the outcome
- A confounder must be...
 - Related to the outcome Y, but not a consequence of Y
 - Related to the explanatory variable X, but not a consequence of X

Including a confounder in the model

• In the following model we have two variables, X_1 and X_2

$$\log t(\Pi(\mathbf{X})) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- And we assume that every level of the confounder, there is parallel slopes
- Note: to interpret β_1 , we did not specify any value of X_2 ; only specified that it be held constant
 - Implicit assumption: effect of X_1 is equal across all values of X_2
- The above model assumes that X_1 and X_2 do not *interact* (with respect to their effect on Y)
 - epidemiology: no "effect modification"
 - meaning the effect of X_1 is the same regardless of the values of X_2

What is an effect modifier?

- An additional variable in the model
 - Outside of the main relationship between Y and X₁ that we are studying
- An effect modifier will change the effect of X_1 on Y depending on its value
 - Aka: as the effect modifier's values change, so does the association between Y and X₁
 - So the coefficient estimating the relationship between Y and X₁ changes with another variable

Confounding vs. Interaction

- **Confounders:** The adjusted odds ratio for one variable adjusting for confounders can be quite different from unadjusted odds ratio
 - Adjusting for them is called *controlling for confounding*.

- Interactions: When odds ratio for one variable is not constant over the levels of another variable, the two variables are said to have a statistical interaction (sometimes also called *effect modification*)
 - i.e.: the log odds of one variable is modified/changed with different values of the other variable
 - A variable is an **effect modifier** if it interacts with a risk factor

Note

Please refer to Lesson 11 from BSTA 512/612 – lots of information about these concepts!

How do we include an effect modifier in the model?

- Interactions!!
- We can incorporate interactions into our model through product terms:

$$(\text{ogit}(T(X))) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \beta_3 X_2 + \beta_3 X_1 X_2 + \beta_3 X_2 + \beta_3 X_1 X_2 + \beta_3 X_3 +$$

- Terminology:
 - main effect parameters: β_1, β_2
 - $\circ\,$ The main effect models estimate the average X_1 and X_2 effects
 - interaction parameter: β_3

Slink fr

> systematic

comp.

Example of interaction

- In a cohort study of elderly people the chance of death (outcome) within 2 years was much higher for those who had previously suffered a hip fracture at the start of these 2 years, but the excess risk associated with a hip fracture was significantly higher for males vs. females
- This is an interaction between hip fracture status (yes/no) and sex (unclear if assigned at birth or no)

yes dads

• Odds ratio for females > odds ratio for males

Types of interactions / non-interactions

No interaction and three potential effects of interaction between two covariates A and B:

• **No interaction** between A and B (confounder with no interaction)

• Unilateralism: exposure to A has no effect in the absence of exposure to B, but a considerable effect when B is present.

• **Synergism:** the effect of A is in the same direction, but stronger in the presence of B.

• Antagonism: the effect of A works in the opposite direction in the presence of B.

Poll Everywhere Question 1

Both log odds increasing w/ hip fracture but @ diff rates

Understand the interaction (1/3)

Understand the interaction (2/3)

- If age does not interact with sex, the distance between l_2 and l_1 is the log odds ratio for sex, controlling for age $(l_2 - l_1)$ stays the same for all values of age.
- If age interacts with sex, the distance between l_3 and l_1 is the log odds ratio for sex, controlling for age.
 - Age values need to be specified because $(l_3 l_1)$ differs for different values of age.
 - Must specify age when reporting odds ratio comparing sex

Understand the interaction (3/3)

- In the real world, it is rare to see two completely parallel logit plots as we see l_2 and l_1
 - But we need to determine if the difference between l₂ and l₃ is important in the model

• We may not want to include the interaction term unless it is statistically significant and/or clinically meaningful

• Likelihood ratio test (or Wald test) may be used to test
the significance of coefficients for variables of the
interaction term

$$festing \beta_3 = 0 \text{ VS} \cdot \beta_3 \neq 0$$

if multi level
cat involved : nud to test multiple coefficients
Lesson 11: Interactions

Poll Everywhere Question 2

Lesson 11: Interactions

M

Summary

- In a logistic model with two covariates : X_1 (the risk factor, a binary variable) and X_2 (potential confounder/effect modifier)
- The role of X_2 can be one of the three possibilities:
 - 1. Not a confounder nor effect modifier, and not significantly associated with Y
 - No need to include X₂ in the model (for your dataset)
 - May still be nice to include if other literature in the field includes it
 - 2. It is a confounder but not an effect modifier. There is statistical adjustment but no statistical interaction
 - Should include \overline{X}_2 in the model as main effect
 - 3. It is an **<u>effect modifier</u>**. There is statistical interaction.
 - Should include X_2 in the model as main effect and interaction term

Learning Objectives

1. Connect understanding of confounding and interactions from linear regression to logistic regression.

- 2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but not effect modifier, or is an effect modifier.
- 3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds ratios.

Deciding between confounder and effect modifier

- This is more of a model selection question (in coming lectures)
- But if we had a model with **only TWO covariates**, we could step through the following process:
 - 1. Test the interaction (of potential effect modifier): use a social control test if interaction term(s) explain enough variation compared to model without interaction
 - Recall that for two continuous covariates, we will test a single coefficient
 - For a binary and continuous covariate, we will test a single coefficient
 - For two binary categorical covariates, we will test a single coefficient
 - For a <u>multi-level categorical covariate</u> (with any other type of covariate), we must test a group of coefficients!!
 - 2. Then look at the main effect (or potential confounder)
 - If interaction already included, then automatically included as main effect (and thus not checked for confounding)
 - For variables that are not included in any interactions:
 - Check to see if they are confounders by seeing whether exclusion of the variable changes any of the main effect of the primary explanatory variable by more than 10%

Step 1: Testing the interaction

- We test with $\alpha = 0.10$ from 513
- Follow the LRT procedure in Lesson 6, slide 38
- Use the hypothesis tests for the specific covariate combo:

Binary & continuous variable

Testing a **single coefficient** for the interaction term using LRT comparing full model (with interaction) to reduced model (without interaction)

Binary & continuous variables

Testing a **group of coefficients** for the interaction term using LRT comparing full model (with interaction) to reduced model (without interaction)

Binary & multi-level variable

Testing a **group of coefficients** for the interaction term using LRT comparing full model (with interaction) to reduced model (without interaction)

Two continuous variables

Testing a **single coefficient** for the interaction term using LRT comparing full model (with interaction) to reduced model (without interaction)

Poll Everywhere Question 2

Step 2: Testing a confounder

- If interaction already included:
 - Meaning: LRT showed evidence for alternative/full model
 - Then the variable is an effect modifier and we don't need to consider it as a confounder
 - Then automatically included as main effect (and thus not checked for confounding)
- For variables that are not included in any interactions:
 - Check to see if they are confounders
 - One way to do this is by seeing whether exclusion of the variable changes any of the main effect of the primary explanatory variable by more than 10%
- If the main effect of the primary explanatory variable changes by less than 10%, then the additional variable is neither an effect modifier nor a confounder
 - We leave the variable out of the model

Testing for percent change ($\Delta\%$) in a coefficient

- Let's say we have X_1 and X_2 , and we specifically want to see if X_2 is a confounder for X_1 (the explanatory variable or variable of interest)
- If we are only considering X_1 and X_2 , then we need to run the following two models:
 - Fitted model 1 / reduced model (mod 1): logit $(\widehat{\pi}(\mathbf{X})) = \widehat{\beta}_0 + \widehat{\beta}_1 X_1$ • We call the above $\widehat{\beta}_1$ the reduced model coefficient: $\widehat{\beta}_{1,\text{mod}1}$ or $\widehat{\beta}_{1,\text{red}1}$
 - Fitted model 2 / full model (mod2): $\operatorname{logit}(\widehat{\pi}(\mathbf{X})) = \widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \widehat{\beta}_2 X_2$

 $\circ~$ We call this \widehateta_1 the full model coefficient: $\widehateta_{1, ext{mod}2}$ or $\widehateta_{1, ext{full}}$

Poll Everywhere Question 3

-0.09

D% = 0.4 - 0.49- X/00% $=\frac{-0.09}{0.49} \times 100\%$

Example: GLOW Study

• From GLOW (Global Longitudinal Study of Osteoporosis in Women) study

• Outcome variable: any fracture in the first year of follow up (FRACTURE: 0 or 1)

- **Risk factor/variable of interest:** history of prior fracture (PRIORFRAC: 0 or 1)
- Potential confounder or effect modifier: age (AGE, a continuous variable)
 - Center age will be used! We will center around the rounded mean age of 69 years old

Lesson 11: Interactions

Example: GLOW Study: Try to visual the sample proportions

• Back in BSTA 512/612, we could visual the data to get a sense if there was an interaction before fitting a model

- With a binary outcome, this is a little harder
 - We could use a contingency table or plot proportions of the outcome
 - Hard to do this when our potential confounder or effect modifier is continuous

Example: GLOW Study: Calculate the proportions

Example: GLOW Study: Plot the proportions

Sample proportion of fracture by age and prior fracture

• From sample proportions, looks like age and prior fracture may have an interaction!

Example: GLOW Study

We also could jump right into model fitting (connecting to the three possible roles of Age):

• Model 1: Age not included

$$d + d \cdot nin^{U}$$

 $confounding$
 $logit (\pi(\mathbf{X})) = \beta_0 + \beta_1 \cdot I(PF)$
• Model 2: Age as main effect (age as potential confounder)
 $d \cdot tronive$
 $logit (\pi(\mathbf{X})) = \beta_0 + \beta_1 \cdot I(PF) + \beta_2 \cdot Age$
• Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

$$ext{logit}\left(\pi(\mathbf{X})
ight) = eta_0 + eta_1 \cdot I(ext{PF}) + eta_2 \cdot Age + eta_3 \cdot I(ext{PF}) \cdot Age$$

Example: GLOW Study

We also could jump right into model fitting (connecting to the three possible roles of Age):

• Model 1: Age not included

• Model 2: Age as main effect (age as potential confounder)

• Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

```
1 glow_m3 = glm(fracture ~ priorfrac + age_c + priorfrac*age_c,
2 data = glow, family = binomial)
```

Example: GLOW Study: Age an effect modifier or confounder?

• Model 1: Age not included

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.417	0.130 ·	-10.859	0.000	-1.679	-1.167
priorfracYes	1.064	0.223	4.769	0.000	0.626	1.502

• Model 2: Age as main effect (age as potential confounder)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.372	0.132	-10.407	0.000	-1.637	-1.120
priorfracYes	0.839	0.234	3.582	0.000	0.378	1.297
age_c	0.041	0.012	3.382	0.001	0.017	0.065

• Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

	term	estimate s	std.error	statistic	p.value	conf.low	conf.high
	(Intercept)	-1.376	0.134	-10.270	0.000	-1.646	-1.120
	priorfracYes	1.002	0.240	4.184	0.000	0.530	1.471
	age_c	0.063	0.015	4.043	0.000	0.032	0.093
2	priorfracYes:age_c	-0.057	0.025	-2.294	0.022	-0.107	-0.008

Example: GLOW Study: Age an effect modifier or confounder?

• Model 1: Age not included

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.417	0.130	-10.859	0.000	-1.679	-1.167
priorfracYes	1.064	0.223	4.769	0.000	0.626	1.502

• Model 2: Age as main effect (age as potential confounder)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.372	0.132	-10.407	0.000	-1.637	-1.120
priorfracYes	0.839	0.234	3.582	0.000	0.378	1.297
age_c	0.041	0.012	3.382	0.001	0.017	0.065

• Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

	term	estimate	std.error	statistic	p.value	conf.low	conf.high
	(Intercept)	-1.376	0.134	-10.270	0.000	-1.646	-1.120
	priorfracYes	1.002	0.240	4.184	0.000	0.530	1.471
	age_c	0.063	0.015	4.043	0.000	0.032	0.093
≽	priorfracYes:age_c	-0.057	0.025	-2.294	0.022	-0.107	-0.008

- Is age an effect modifier?
 - Test the significance of the interaction term in Model 3
 - We can use the Wald test or LRT
- If not an effect modifier, check the change in coefficient for prior fracture between Model 1 and Model 2

Example: GLOW Study: Age an effect modifier or confounder?

• Model 1: Age not included

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.417	0.130	-10.859	0.000	-1.679	-1.167
priorfracYes	1.064	0.223	4.769	0.000	0.626	1.502

• Model 2: Age as main effect (age as potential confounder)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.372	0.132	-10.407	0.000	-1.637	-1.120
priorfracYes	0.839	0.234	3.582	0.000	0.378	1.297
age_c	0.041	0.012	3.382	0.001	0.017	0.065

• Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

	term	estimate s	std.error	statistic	p.value	conf.low	conf.high
	(Intercept)	-1.376	0.134	-10.270	0.000	-1.646	-1.120
	priorfracYes	1.002	0.240	4.184	0.000	0.530	1.471
	age_c	0.063	0.015	4.043	0.000	0.032	0.093
\rightarrow	priorfracYes:age_c	-0.057	0.025	-2.294	0.022	-0.107	-0.008

- Is age an effect modifier?
 - Test the significance of the interaction term in Model 3
 - We can use the Wald test or LRT

 If not an effect modifier, check the change in coefficient for prior fracture between Model 1 and Model 2

Short version of testing the interaction: Wald statistic for the interaction coefficient, $\hat{\beta}_3$, is statistically significant with p = 0.022. Thus, there is evidence of a statistical interaction between these age and prior fracture.

Poll Everywhere Question 4

 $logit(\pi(\mathbf{X})) =$ $\beta_0 + \beta_1 I(PF)$ + β2 Age 55-64 + β3 Age 65-74 + βy Age 75-90 + BET(PF)X Age 55-64 I(PF)X Age 65-74 ge 75-90

Lesson 11: Interactions

Please please reference your work from BSTA 512/612

- We had lessons and homeworks dedicated to this process!
- The process will be the same!
 - Only differences are t-test and F-test are replaced by Wald test and Likelihood ratio test, respectively!!

Learning Objectives

- 1. Connect understanding of confounding and interactions from linear regression to logistic regression.
- 2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but not effect modifier, or is an effect modifier.

3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds ratios.

Example: GLOW Study

• Age is an effect modifier of prior fracture

• When a covariate is an **effect modifier**, its status as a confounder is of secondary importance since the estimate of the effect of the risk factor depends on the specific value of the covariate

- Must summarize the effect of prior fracture on current fracture by age
 - Cannot summarize as a single (log) odds ratio

Example: GLOW – Interaction interpretation

• Model 3:

Example: GLOW – Interaction interpretation

• Model 3:

term	estimate p.value conf.low conf.high						
(Intercept)	-1.376	0.000	-1.646	-1.120			
priorfracYes	1.002	0.000	0.530	1.471			
age_c	0.063	0.000	0.032	0.093			
priorfracYes:age_c	-0.057	0.022	-0.107	-0.008			

• Estimated odds ratios table:

term	estimate p	o.value c	onf.low co	onf.high
(Intercept)	0.25	0.00	0.19	0.33
	2.72	0.00	1.70	4.35
age_c	1.06	0.00	1.03	1.10
priorfracYcs.age_	0.94	0.02	0.90	0.99
			•	

•
$$\widehat{eta}_3=-0.057$$
 \longleftarrow

- The effect of having a prior fracture on the log odds of having a new fracture decreases by an estimated 0.057 for every one year increase in age (95% CI: 0.008, 0.107).
 - Aka the log odds of a new fracture comparing prior fracture to no prior fracture gets closer to one another as age increases

 $ullet \, \widehat{eta}_1 = 1.002$

 For individuals 69 years old, the estimated difference in log odds for a new fracture is 1.002 comparing individuals with a prior fracture to individuals with no prior fracture (95% CI: 0.530, 1.471).

$$\exp(\widehat{eta}_1)=2.72$$
 OR

Age_c = 0 Age_c = 1 • For individuals 69 years old, the estimated odds of a new fracture for individuals with prior fracture is 2.72 times the estimated 70-69 odds of a new fracture for individuals with no prior fracture (95% CI: 1.70, 4.35).

Poll Everywhere Question 5

Lesson 11: Interactions

Plot of estimated log odds

Poll Everywhere Question 6 (Bonus q if we're feeling it)

Plot the predicted probability of fracture

Odds Ratio in the Presence of Interaction (1/2)

• When interaction exists between a risk factor (F) and another variable (X), the estimate of the odds ratio for F depends on the value of X

- When an interaction term (F*X) exists in the model
 - $\widehat{OR}_F \neq \exp(\widehat{eta}_F)$ in general
- Assume we want to compute the odds ratio for ($F = f_1$ and $F = f_0$, the correct model-based estimate is

$$\widehat{OR}_F = \exp\left(\hat{g}\left(F = f_1, X = x\right) - \hat{g}\left(F = f_0, X = x\right)\right)$$

• Let's work this out on the next slide!

Odds Ratio in the Presence of Interaction (2/2) < 100 × C Lesson 5 • We may write the two logits (log-odds) for given x as below: regress

$$\hat{g} \left(F = f_1, X = x\right) = \hat{\beta}_0 + \hat{\beta} f_1 + \hat{\beta}_2 x + \hat{\beta}_3 f_1 \cdot x$$

$$\hat{g} \left(F = f_0, X = x\right) = \hat{\beta}_0 + \hat{\beta} f_0 + \hat{\beta}_2 x + \hat{\beta}_3 f_0 \cdot x$$

• The difference in two logits (log-odds) is:

$$(x) = \beta_0 + \beta(f_0) + \beta_2 x + \beta_3 f_0$$

diff b/w log odds

$$\hat{g}\left(f_{1},x
ight) - \hat{g}\left(f_{0},x
ight) = \left[\hat{eta}_{0} + \hat{eta}_{1}f_{1} + \hat{eta}_{2}x + \hat{eta}_{3}f_{1}\cdot x
ight] - \left[\hat{eta}_{0} + \hat{eta}_{1}f_{0} + \hat{eta}_{2}x + \hat{eta}_{3}f_{0}\cdot x
ight] \ \widetilde{g}\left(f_{1},x
ight) - \hat{g}\left(f_{0},x
ight) = \hat{eta}_{1}f_{1} - \hat{eta}_{1}f_{0} + \hat{eta}_{3}xf_{1} - \hat{eta}_{3}xf_{0} \ \widehat{g}\left(f_{1},x
ight) - \hat{g}\left(f_{0},x
ight) = \hat{eta}_{1}\left(f_{1} - f_{0}
ight) + \hat{eta}_{3}x\left(f_{1} - f_{0}
ight)$$

• Therefore,

$$\widehat{OR}(F=f-1,F=f_0,X=x)=\widehat{OR}_F= \widehat{\exp} [\hat{eta}_1 \left(f_1-f_0
ight) + \hat{eta}_3 x \left(f_1-f_0
ight)]$$

Steps to compute OR under interation

• Note: You don't need to know the math itself, but I think it's helpful to think of it this way

1. Identify two sets of values that you want to compare with only one variable changed

• In previous slides, one set was $(F=f_1,X=x)$ and the other was $(F=f_0,X=x)$

2. Substitute values in the fitted log-odds model

- You should have two equations, one for each set of values
- 3. Take the difference of the two log-odds
- 4. Exponentiate the resulting difference

Example: GLOW Study

1. Identify two sets of values that you want to compare with only one variable changed

Set 1: PF = 1)Age = a
Set 2: PF = 0, Age = a
I odds ratio for prior fracture

2. Substitute values in the fitted log-odds model

$$egin{aligned} &\logit\left(\widehat{\pi}(\mathbf{X})
ight) = \widehat{eta}_0 + \widehat{eta}_1 \cdot I(\mathrm{PF}) + \widehat{eta}_2 \cdot Age + \widehat{eta}_3 \cdot I(\mathrm{PF}) \cdot Age \ &\logit\left(\widehat{\pi}(PF=1,Age=a)
ight) = \widehat{eta}_0 + \widehat{eta}_1 \cdot 1 + \widehat{eta}_2 \cdot a + \widehat{eta}_3 \cdot 1 \cdot Age \ &= \widehat{eta}_0 + \widehat{eta}_1 + \widehat{eta}_2 \cdot a + \widehat{eta}_3 \cdot a \ &\logit\left(\widehat{\pi}(PF=0,Age=a)
ight) = \widehat{eta}_0 + \widehat{eta}_1 \cdot 0 + \widehat{eta}_2 \cdot a + \widehat{eta}_3 \cdot 0 \cdot Age \ &= \widehat{eta}_0 + \widehat{eta}_2 \cdot a \ \end{aligned}$$

Example: GLOW Study

3. Take the difference of the two log-odds

$$egin{aligned} & [logit\left(\pi\left(PF=1,\;Age=a
ight)
ight)]{-}[logit\left(\pi\left(PF=0,\;Age=a
ight)
ight)] \ & = \left[\hat{eta}_0+\hat{eta}_1+\hat{eta}_2a+\hat{eta}_3a
ight] - \left[\hat{eta}_0+\hat{eta}_2a
ight] \ & = \hat{eta}_1+\hat{eta}_3a \end{aligned}$$

4. Exponentiate the resulting difference

$$\widehat{OR}\left[(PF=1,\;Age=a),(PF=0,\;Age=a)
ight]= exp\left(\hat{eta}_1+\hat{eta}_3a
ight)$$

We can put in values for age to see how the OR changes

• If we let a = 60, i.e., compute OR for age = 60, then

$$\widehat{OR}_{a=60} = \exp(1.002 - 0.057 \cdot (60 - 69)) = 4.55$$

• If we let a = 70, i.e., compute OR for age = 70, then

 $\widehat{OR}_{a=70} = \exp(1.002 - 0.057 \cdot (70 - 69)) = 2.57$

Calculate odds ratios across values

A tibble: 6×5

	age_c	age	No	Yes	OR_YN
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	-14	55	-2.25	-0.446	6.08
2	-13	56	-2.19	-0.441	5.74
3	-12	57	-2.13	-0.436	5.42
4	-11	58	-2.06	-0.430	5.12
5	-10	59	-2.00	-0.425	4.83
6	-9	60	-1.94	-0.420	4.56

Plotting the odds ratio for an interaction

How would I report these results?

• Remember our main covariate is prior fracture, so we want to focuse on how age changes the relationship between prior fracture and a new fracture!

For individuals 69 years old, the estimated odds of a new fracture for individuals with prior fracture is 2.72 times the estimated odds of a new fracture for individuals with no prior fracture (95% CI: 1.70, 4.35). As seen in Figure 1 (a), the odds ratio of a new fracture when comparing prior fracture status decreases with age, indicating that the effect of prior fractures on new fractures decreases as individuals get older. In Figure 1 (b), it is evident that for both prior fracture statuses, the predict probability of a new fracture increases as age increases. However, the predicted probability of new fracture for those without a prior fracture increases at a higher rate than that of individuals with a prior fracture. Thus, the predicted probabilities of a new fracture converge at age [insert age here].

Figure 1: Plots of odds ratio and predicted probability from fitted interaction model

Lesson 11: Interactions