Lesson 11: Interactions

NI AYELN
2024-05-08



Learning Objectives

1. Connect understanding of confounding and interactions from linear regression to logistic regression.

2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but
not effect modifier, or is an effect modifier.

3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds

ratios.
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Revisit from 512: What is a confounder?

¢ A confounding variable, or confounder, is a factor/variable that wholly or partially accounts for the observed

effect of the risk factor on the outcome
e ——
e A confounder must be...
= Related to the outcomeY, but not a consequence of Y

= Related to the explanatory variable X, but not a consequence of X

Confounder

. . A iation?
Vanable(;];mterest » oo >[ Outcome (Y) ]

fF vV ——— 1
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Including a confounder in the model

e |n the following model we have two variables, X; and X5

‘ 03\{3 (“ Li}k: Bo +_ﬁ1_X_1 PaXo

¢ And we assume that every level of the confounder, there is parallel slopes

» Note: to interpret 81, we did not specify any value of X5; only specified that it be held constant
= |mplicit assumption: effect of X is equal across all values of X5

¢ The above model assumes that X7 and X5 do not interact (with respect to their effecton Y)
= epidemiology: no “effect modification”

= meaning the effect of X is the same regardless of the values of X,
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What is an effect modifier?

e An additional variable in the model

= Qutside of the main relationship between Y and X;
that we are studying -

¢ An effect modifier will change the effect c@an Y
depending on its value -

= Aka: as the effect modifier’s values change, so does
the association between Y and X

= So the coefficient estimating the relationship
between Y and X; changes with another variable
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Confounding vs. Interaction

e Confounders: The adjusted odds ratio for one variable adjusting for S
confounders can be quite different from unadjusted odds ratio
= Adjusting for them is called controlling for confounding. Please refer to | esson 11

fromBSTA512/612 - lots
of information about these

¢ Interactions: When odds ratio for one variable is not constant over the levels concepts!
of another variable, the two variables are said to have a statistical )
interaction (sometimes also called effect modification)

= j.e.:the log odds of one variable is modified/changed with different values
of the other variable

= Avariableis an effect modifier if it interacts with a risk factor
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How do we include an effect modifier in the model?

¢ |nteractions!!

e We can incorporate interactions into our model through product terms:

[ogt (T (XK= ot B, e B

e Terminology: t—_\'_g/
Systumatic comp -

=" main effectparameters

o The main effect models estimate the average X7 and X effects

= interaction parameter: 53

link n

Lesson 11: Interactions



Example of interaction mode  Femada

¢ |n a cohort study of elderly people the chance of death

(outcome) within 2 years was much higher for those who
had previously suffered a hip fracture at the start of these 2
years, but the_excess risk associated with a hip fracture was

significantly higher for males vs. females
-_— =a--——

e This is an interaction between hip fracture status (yes/no)
and sex (unclear if assigned at birth or no)

T Jdd s
2 no 9dds

—>¢ QOdds ratio for females > odds ratio for males
o ——— T

l; odds pakio (hC Ar atfn)

an ‘Fracd’l/w«
WMP N? iy ‘Ff‘ldﬂ/\ff&
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Types of interactions / non-interactions

No interaction and three potential effects of interaction between two covariates A and B:

e Nointeraction between A and B (confounder with no interaction)

e Unilateralism: exposure to A has no effect in the absence of exposure to B, but a considerable effect when B is
present.

e Synergism: the effect of Ais in the same direction, but stronger in the presence of B.

e Antagonism: the effect of A works in the opposite direction in the presence of B.
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Types of interactions / non-interactions Po+ B X1 ¥BL Xy

+ PR
(a) No interaction / ‘oﬂﬂ: (“( x,)) bPUnllateraEm_X____u t P§ X lXL

Confounder,but | i . _~ | Exposure to Ahas no
. . ) Exposed to @ Ex dtoB
nointeraction § | " \ 3 e  effect in the absence
between AandB 3 1 \ \ L ' of exposure to B, but a
\ § Unexposed {8 S considerable effect
5 l - Unexposed to B 5 ’ h B
Y . lwhenBispresent
Unexposed Exposed wd 7 Exposed # 3 > O @ O JR ﬁl’"
Status of A
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Effectof Aisin g Effect of A works
the same g 2 " in the opposite
direction,but = f 3 direction in the
o e % o)
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Poll Everywhere Question 1

13:35 Wed May 8

Join by Web PollEv.com/nickywakim275

Going back to the example on Slide 10, what type of interaction
occurred between sex and hip fractures?

Unilateralism

@ Synergism

PO IR S

Powered by @ Poll Everywhere
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Understand the interaction (1/3)

e Figure plots the logits
(log-odds) underthree~ Tt 0
different models showing
the presence and absence
of interaction.

Log Odds + 4

e Response variable: CHD

e Risk factor: sex —> Mol ©

e Covariate to be

controlled: age } 0 gl

=

Logit for males
(with interaction)

l

=T : ogit for males
— 'nteraction)

Logit for females |
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Understand the interaction (2/3)

e |[fage does not interact with sex, the distance
between [ and [ is the log odds ratio for sex,

controlling for age ({5 — l;) stays the same for all
values of age. T

B

e |[fage interacts with sex, the distance betwee@nd
__11 is the log odds ratio fo[ sex, controlling for age.

Log Odds + 4

= Age values need to be specified because (I3 — ;)
differs for different values of age.

—

= Must specify age when reporting odds ratio
comparing sex
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Understand the interaction (3/3)

¢ Inthereal world, it is rare to see two completely
parallel logit plots as we see [5 and [;

= But we need to determine if the difference between ° e '
l5 and [3 is important in the model 5 9
3 g
)
e We may not want to include the interaction term §, 3
unless it is statistically significant and/or clinically 3
meaningful |

35 40 45 S50 55 60 65 70

e Likelihood ratio test (or Wald test) may be used to test AGE

the §Lgniﬁcance of coefficients for variables of the
interaction term

— H,H’\V\% [)73';0 VS. (53#0

£ mulh (eve] . fest mulLtiple coett
cat Wvolve d nud ﬂ’(W/ Lp\PT)
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Poll Everywhere Question 2

13:45 Wed May 8

Bo + Bisex; + Brage;
the p-value wa What doesthat mean for the log-odds in the plot?

> 20.05

@ [5 is not statistically differept , /Q.g

35 40 45 50 55 60 65 70

AGE g = 8= ==k o A8HdEm e

Powered by Q Poll Everywhere
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Summary

* |n alogistic model with two covariates : X (the risk factor, a binary variable) and X (potential
confounder/effect modifier)

e The role of X5 can be one of the three possibilities:
1. Not a confounder nor effect modifier, and not significantly associated with Y
= No need to include X5 in the model (for your dataset)

= May still be nice to include if other literature in the field includes it

2. It is a confounder but not an effect modifier. There is statistical adjustment but no statistical interaction

\-
= Should include X5 in the model as main effect

3.ltisan gffect modifier. There is statistical interaction.

= Should include X5 in the model as main effect and interaction term
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Learning Objectives

1. Connect understanding of confounding and interactions from linear regression to logistic regression.

2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but

not effect modifier, or is an effect modifier.

3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds
ratios.
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Deciding between confounder and effect modifier

e Thisis more of a model selection question (in coming lectures)

e But if we had a model with only TWO covariates, we could step through the following process:

1. Test the interaction (of potential effect modifier): use a EBt
enough variation compared to model without interaction

st if interaction term(s) explain

(Wald >

—

= Recall that for two continuous covariates, we will test a single coefficient

o

= For a binary and continuous covariate, we will test a single coefficient

—

= For two binary categorical covariates, we will test a single coefficient

= For a multi-level categorical covariate (with any other type of covariate), we must test a group of
;%
coefficients!!

—

2. Then look at the main effect (or potential confounder)

= |f interaction already included, then automatically included as main effect (and thus not checked for
confounding)

= For variables that are not included in any interactions:

o Check to see if they are confounders by seeing whether exclusion of the variable changes any of the
main effect of the primary explanatory variable by more than 10%

Lesson 11: Interactions 21



Step 1: Testing the interaction
e Wetestwitha = 0.10 Fom S 1A

* Follow the LRT procedure in Lesson 6, slide 38

¢ Use the hypothesis tests for the specific covariate combo:

Binary & continuous variable Binary & continuous variables

Testing a single coefficient for the interaction term Testing a group of coefficients for the interaction
using LRT comparing full model (with interaction) to term using LRT comparing full model (with

reduced model (without interaction) interaction) to reduced model (without interaction)

Binary & multi-level variable Two continuous variables
Testing a group of coefficients for the interaction Testing a single coefficient for the interaction term
term using LRT comparing full model (with using LRT comparing full model (with interaction) to

interaction) to reduced model (without interaction) reduced model (without interaction)

Lesson 11: Interactions
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Step 2: Testing a confounder

e Ifinteraction already included:
= Meaning: LRT showed evidence for alternative/full model
= Then the variable is an effect modifier and we don'’t need to consider it as a confounder
= Then automatically included as main effect (and thus not checked for confounding)

e For variables that are not included in any interactions:

= Check tosee if they are confounders

= One way to do this is by seeing whether exclusion of the variable changes any of the main effect of the
primary explanatory variable by more than 10%

Cmm——

* |If the main effect of the primary explanatory variable changes by less than 10%, then the additional variable is

. . _—
neither an effect modifier nor a confounder
-— N\

= \We |leave the variable out of the model

Lesson 11: Interactions
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Testing for percent change ( A %) in a coefficient

¢ Let’s say we have X7 and X5, and we specifically want to see if X5 is a confounder for X (the explanatory
variable or variable of interest)

e |f we are only considering X; and X, then we need to run the following two models:

= Fitted model 1/ reduced model ( ):logit (%(X)) = B\o + 23\1X1

o We call the above Bl the reduced model coefficient: B\l,modl or El,red

= Fitted model 2/ full model ( ):logit (7(X)) = Bo+ BiX1 + B2 Xs

~ ~ ~ _—
o We call this B; the full model coefficient: 81 mod2 Or B1,fun

Calculation for % change in coefficient

B1,mod1 — 51,mod2'  100% /Bl,rec/l\ — B full

A% = 100% -| 22
51,m0d2 A ﬂl,full
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Poll Everywhere Question 3

Join by Web  PollEv.com/nickywakim275

We have the following two fitted mode Ogl
031 andlocit(r(x)) = —3.05 @

—0.01
%____ O‘%—OLYLOI

— X/ w7,
0. %9
—3 + = —0. 07

x[004

2. Using the O LIL 7

9 is not a confounder

is a confounder
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Example: GLOW Study

¢ From GLOW (Global Longitudinal Study of Osteoporosis in Women) study
e Outcome variable: any fracture in the first year of follow up (ME: Oor1)

¢ Risk factor/variable of interest: history of prior fracture (PRIORFRAC: O or 1)

——— e

¢ Potential confounder or effect modifier: age (AGE, a continuous variable)

= Center age will be used! We will center around the rounded mean age of 69 years old

—_——
1 (aploreld) e
2 mean age (glow500Sage) ()
3 glow glow500 (age c = age mean_age)

LyOLioﬂ wr w] inkeyp of
Loeff dnts
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Example: GLOW Study: Try to visual the sample proportions

e BackinBSTA 512/612, we could visual the data to get a sense if there was an interaction before fitting a model

e With a binary outcome, this is a little harder

= We could use a contingency table or plot proportions of the outcome

= Hard to do this when our potential confounder or effect modifier is continuous

\..o=4°""2‘omp \(5[

N

X
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Example: GLOW Study: Calculate the proportions

1 glow2 = glow %>%
2 (age., priorfrac, # last one needs to be outcome
3 summarise(n = )) Fo%
4 (freg = n / (n)) %>% # takes the proportion of yes/ng
— (fracture == "Yes") # Filtering so only "success" shown
6 #filter(freq != I T ® T= 1)
7
8 (glow2)
# A tibble: 6 x 5
# Groups: age, priorfrac [6]
age priorfrac fracture n freq
<fct> <int> <dbl>
1 Yes Go.15
2 Yes 11
3 Yes 3 0.158
4 Yes 1 0.333
5 Yes 3 0.15
6 Yes 2 0.667
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Example: GLOW Study: Plot the proportions

1 (data = glow2, (v = freq, x = age, color = priorfrac)) +

2 () + (0, 1) + (se = F) +

3 (x = "Age (years)", y = "Proportion of fracture",

4 color = "Prior fracture", title = "Sample proportion of fracture by age and prior fracture") +
5 (axis.title = (size = 18), axis.text = (size = 18),

6 title = (size = 18), legend.text= (size=18))

Sample proportion of fracture by age and prior fracture
1.00- - . . . oo .

Prior fracture

- No
- Yes

0.00-

60 70 80 90
Age (years)

e From sample proportions, looks like age and prior fracture may have an interaction!

Lesson 11: Interactions
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Example: GLOW Study

We also could jump right into model fitting (connecting to the three possible roles of Age):

J Age not included
,M\vx W d%“c pYU)‘r
N/ Y\Sm w1 logit (m(X)) = Bo + 51@ ' £rctwre

e Model 2: Age as main effect (age as potential confounder)

WV
Mm\ logit (7(X)) = B + B1 - I(PF) + B, - Age

e Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

logit (w(X)) = By + B1 - I(PF) + B2 - Age + B3 - I(PF) - Age

—_————— S
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Example: GLOW Study

We also could jump right into model fitting (connecting to the three possible roles of Age):

J Age not included
1 glow ml = (fracture ~ priorfrac,
2 data = glow, family = binomial)

e Model 2: Age as main effect (age as potential confounder)

1 glow m2 = (fracture ~ priorfrac + age c,
2 data = glow, family = binomial)

e Model 3: Age and Prior Fracture interaction (age as potential effect modifier)

1 glow m3 = (fracture ~ priorfrac + age c + priorfrac*age_c,
2 data = glow, family = binomial)

Lesson 11: Interactions
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Example: GLOW Study: Age an effect modifier or confounder?
. Age not included

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -1.417 0.130 -10.859 0.000 -1.679 -1.167
priorfracYes 1.064 0.223 4.769 0.000 0.626 1.502

e Model 2: Age as main effect (age as potential confounder)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -1.372 0.132 -10.407 0.000 -1.637 -1.120
priorfracYes 0.839 0.234 3.582 0.000 0.378 1.297
age_c 0.041 0.012 3.382 0.001 0.017 0.065

e Model 3: Age and Prior Fracture interaction (age as potential
effect modifier)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -1.376 0.134 -10.270 0.000 -1.646 -1.120
priorfracYes 1.002 0.240 4.184 0.000 0.530 1.471
age_c 0.063 0.015 4.043 0.000 0.032 0.093

-—9 priorfracYes:age_c -0.057 0.025 -2.294 0.022 -0.107 -0.008
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Example: GLOW Study: Age an effect modifier or confounder?

. Age not included e |s age an effect modifier?
term estimate std.error statistic p.value conf.low conf.high = Test t_he Slgmﬁcance of the interaction
(Intercept) —1.417 0.130 —10.859 0.000 -1.679 -1.167 termin Model 3
priorfracYes 1.064 0.223 4.769 0.000 0.626 1.502 = We can use the Wald test or LRT

o—-———/

e Model 2: Age as main effect (age as potential confounder)
term estimate std.error statistic p.value conf.low conf.high e If not an effect modifier, check the change
(Intercept) -1.372 0.132 -10.407 0.000 -1.637 -1.120 in coefficient for prior fracture between
priorfracYes 0.839 0.234 3.582 0.000 0.378 1.297 Model 1 and Model 2

age_c 0.041 0.012 3.382 0.001 0.017 0.065

e Model 3: Age and Prior Fracture interaction (age as potential
effect modifier)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -1.376 0.134 -10.270 0.000 -1.646 -1.120
priorfracYes 1.002 0.240 4.184 0.000 0.530 1.471
age_c 0.063 0.015 4.043 0.000 0.032 0.093

.-%priorfracYes:age_c -0.057 0.025 -2.294 0.022 -0.107 -0.008
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Example: GLOW Study: Age an effect modifier or confounder?

J Age not included e |s age an effect modifier?
term estimate std.error statistic p.value conf.low conf.high = Test t_he Slgmﬁcance of the interaction
(Intercept) -1.417 0.130 -~10.859 0.000 -1.679 -1.167 term in Model 3
priorfracYes  1.064 0.223 4.769 0.000 0.626 1.502 = \We can use the Wald test or LRT

e Model 2: Age as main effect (age as potential confounder)

term estimate std.error statistic pvalue conf.low conf.high ¢ If not an effect modifier, check the change
(Intercept) -1.372 0.132 -10.407 0.000 -1.637 -1.120 in coefficient for prior fracture between
priorfracYes 0.839 0.234 3582 0.000 0.378 1.297 Model 1 and Model 2

age_c 0.041 0.012 3.382 0.001 0.017 0.065

e Model 3: Age and Prior Fracture interaction (age as potential
effect modifier) Short version of testing the interaction:
Wald statistic for the interaction

term estimate std.error statistic p.value conf.low conf.high i ~ i<ticallv sienif
(Intercept) ~1376 0.134 -10.270 0.000 -1.646 —-1.120 quh aeni(:), €322'5 _T_t]at'St:a y.5|gn.|dcant
priorfracYes 1002 0240 4.184 0.000 0530 1.471 withp = 0.022. Thus, there is evidence

of a statistical interaction between these

age_c 0.063 0.015 4.043 0.000 0.032 _0.093 d prior f
$ priorfracYes:age_c0.025 -2.294 0.02Z2_-0.107 -0.008 age and prior racture.
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Poll Everywhere Question 4

Join by Web  PollEv.com/nickywakim275

If age were split into three categories: 55-64, 65-74, and 75-90, and we
were testing the interaction between age and prior fracture, what test
would we use?

Wald test

@ Likelihood ratio test

Powered by 0 Poll Everywhere
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Please please please reference your work from BSTA 512/612

¢ We had lessons and homeworks dedicated to this process!
e The process will be the same!

= Only differences are t-test and F-test are replaced by \A';al.d}tgs; and Likelihood ratio test, respectively!!
> = <
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Learning Objectives

1. Connect understanding of confounding and interactions from linear regression to logistic regression.
2. Determine if an additional independent variable is a not a confounder nor effect modifier, is a confounder but
not effect modifier, or is an effect modifier.

3. Calculate and interpret fitted interactions, including plotting the log-odds, predicted probability, and odds

ratios.
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Example: GLOW Study

e Age is an effect modifier of prior fracture

* When a covariate is an effect modifier, its status as a confounder is of secondary importance since the
estimate of the effect of the risk factor depends on the specific value of the covariate

e Must summarize the effect of prior fracture on current fracture by age

= Cannot summarize as a single (log) odds ratio

Lesson 11: Interactions
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Example: GLOW - Interaction interpretation

e Model 3:
logit (7(X)) = Bo +B, - I(PF) +B5 - Age +B5 - I(PF) - Age
logit (7(X)) = —1.376 ~ +1.002-I(PF)  +0.063- Age =~ —0.057 - I(PF) - Age
term estimate std.error statistic p.value conf.low conf.high
(Intercept) -1.376 0.134 -10.270 0.000 -1.646 -1.120
priorfracYes 1.002 0.240 4.184 0.000 0.530 1.471
age_c 0.063 0.015 4.043 0.000 0.032 0.093

priorfracYes:age_c -0.057 0.025 -2.294 0.022 -0.107 -0.008
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Example: GLOW - Interaction interpretation

e Model 3: \[/

term estimate p.value conf.low conf.high
(Intercept) -1.376 0.000 -1.646 -1.120
priorfracYes 1.002 0.000 0530 1471
age_c 0.063 0.000 0.032 0.093

@acYes:age_c -0.057 }0.022 -0.107 -0.008

e Estimated odds ratios table:

—_
term estimate p.value conf.low conf.high
(Intercept) 0.25 0.00 0.19 0.33
—=priorfracYes 272 000 170 435
age_c 1.06. 0.00 1.03 1.10

m =

L g

C
l;a%x;ls 0

e B3 = —0.057 €~

e The effect of having a prior fracture on the log odds of having a

new fracture decreases by an estimated 0.057 for every one year

increase in age (95% Cl: 0.008, 0.107).

= Aka the log odds of a new fracture comparing prior fracture to no

prior fracture gets closer to one another as age increases
Eee—
e 3, = 1.002

e Forindividuals 69 years old, the estimated difference in log odds
for anew fractureis 1.002 comparing individuals with a prior
fracture to individuals with no prior fracture (5% CI: 0.530,

_1.471).

e exp(B1) = 2.72 @

* Forindividuals 69 years old, the estimated odds of a new fracture

P(%L = |
= O 13/« 70 forindividuals Wltls 2.72 times the estimated
7 ()—A) odds of a new fracture for individuals WWW%%

= | Cl:1.70,4.35).
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Poll Everywhere Question 5

14:31 Wed May 8

JoinbyWeb  PollEv.com/nickywakim275

SEE MORE v

Powered by @ Poll Everywhere
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Plot of estimated log odds

1 prior age =
2 frac pred log =
3 pred glow2 =

expand grid(priorfrac = ( 90)-69)
predict(glow m3, lor se.fit = T, type ) —_—
prior age %>% mutate(frac pred log = frac pred log t,

age_c + mean_age)

c( IINOII ,
prior age,

IIYeSII ) ,

age c =

age, y = frac pred, color
age, y = frac pred log, color =

= priorfrac)) +
priorfrac))

element_text(size=16)) +

y = "Log-0dds of Fracture")

4 age =
> ——
6 gogplot(pred glow2) + #geom point(aes(x =
7 geom smooth(method = "loess", aes(x =
8 theme (text = element_text(size=20), title =
9 labs(color = "Prior Fracture", x = "Age years)
0.0 % *ﬁb\ %DQ. F?B
o -0.5-
=
e
L 1.0
o
(2]
3
Q -1.5-
(2]
S
-2.0-

60

70 80 90
Age (years)
e
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Poll Everywhere Question 6 (Bonus q if we're feeling it)



Plot the predicted probability of fracture R Ao\

1 frac pred = predict(glow m3, prior age, se.fit = T, type="response")
2 pred glow = prior age %>% mutate(frac pred = frac preds$fit,

3 age = age_c + mean_age)

4

5 ggplot(pred glow) + #geom point(aes(x = age, y = frac pred, color = priorfrac)) +

6 geom smooth(method = "loess", aes(x = age, y = frac pred, color = priorfrac)) +

7 theme (text = element text(size=20), title = element text(size=16)) + ylim(0,1) +

8 labs(color = "Prior Fracture", x = "Age (years)", y = "Predicted Probability of F
1.00-

©
N
o

Prior Fracture

~— No
. // ~— Yes

<
[N
o

Predicted Probability of Fracture
o
(&)}
o

0.00-
60 70 80 90
Age (years)
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Odds Ratio in the Presence of Interaction (1/2)

¢ When interaction exists between a risk factc@and another variablhe estimate of the odds ratio for F

depends on the value of X

e When an interaction term (F*X) exists in the model

exp(Br) in ger_:;;-

» | et’'s work this out on the next slide!
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Odds Ratio in the Presence of Interaction (2/2) =— [por @ lesstn

¢ We may write the two logits (log-odds) for given x as below: SWV\P \L \06\Sh0
v‘{,ﬁdv‘t CS
-— G(F=fi,X=2x)=F+ Blfi )} Boz + Bsfr z
. §(F = fo,X =) = Bo+ BJo [+ Boz + Bsfo- =

* The difference in two logits (log-odds) is: o lﬂ/IN \,Oﬂ 00(45

g (f1,2) — §(fo,z) = Bufr — Bufo + Bszfr — Bsz fo
g (fi,z) — §(fo,x) = B (fr — fo) + Bsz (F1 — fo)

———— g

g(fi,z) — g (fo,x) = [Bo+81f1+32$+33f1' CE] — [Bo+31f0+82m—|—33f0- w]

e Therefore,

@(F:f— LF=f,X=nx) :@Fl(fl_f0)+83m(fl_f0)]

I
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Steps to compute OR under interation

e Note: You don't need to know the math itself, but | think it’s helpful to think of it this way

1. Identify two sets of values that you want to compare with only one variable changed

e Inprevious slides, one set was (F' = f1, X = x) and the other was (F' = fy, X = x)
2. Substitute values in the fitted log-odds model

¢ You should have two equations, one for each set of values
3. Take the difference of the two log-odds

4. Exponentiate the resulting difference

Lesson 11: Interactions

49



Example: GLOW Study

1. Identify two sets of values that you want to compare with only one variable changed

e Set1: PF :®Age )
e Set2: PF :Age )
L5 gdds vatio £ p’Yior Fachue

2. Substitute values in the fitted log-odds model
logit (F(X)) = Bo+ B1 - I(PF) + By - Age + Bs - I(PF) - Age

logit(%@/lge:a)) :§0+Bl-1+§2-a+33-1-Age

:§0+E1+32'G+B3'a

:BO—FB\z'a
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Example: GLOW Study

3. Take the difference of the two log-odds

[logit (m (PF =1, Age = a))]|—[logit (w (PF =0, Age = a))]
= [BO + B+ Pra+ B:&a} - [Bo + B2a]

—

OR|[(PF =1, Age = a),(PF =0, Age = a)] = exp (Bl + Bga)

4. Exponentiate the resulting difference
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We can put in values for age to see how the OR changes

e Ifweleta = 60, i.e., compute OR for age = 60, then

OR,_¢0 = exp(1.002 — 0.057 - (60 — 69)) = 4.55

e Ifweleta = 70, i.e., compute OR for age = 70, then

OR,_7 = exp(1.002 — 0.057 - (70 — 69)) = 2.57
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Calculate odds ratios across values

1 prior age = (priorfrac = c("No", "Yes"), age c = (55:90)-69)
2 frac pred logit = (glow m3, prior age, se.fit = T, type="link")
3 pred glow2 = prior_ age %>% (frac pred = frac pred logitsfit,
4 age = age c + mean_age) %>%
5
6 (names from = priorfrac, values from = frac pred) %>%
7
8 (OR_YN = (Yes - No))
9 (pred _glow2)
# A tibble: 6 x 5
age_c age No Yes OR_YN

<dbl> <dbl> <dbl> <dbl> <dbl>

1 -14 55 -2.25 -0.446 6.08
2 -13 56 -2.19 -0.441 5.74
3 -12 57 -2.13 -0.436 5.42
4 -11 58 -2.06 -0.430 5.12
5 -10 59 -2.00 -0.425 4.83
6 -9 60 -1.94 -0.420 4.56
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Plotting the odds ratio for an interaction

(x = "Age (years)", y = "Estimated odds ratio",

1 (pred glow2) +

2 (yintercept = 1) +

3 (method = "loess", (x = age, y = OR_¥YN)) +

4 (text = (size=20), title = (size=16)) +
5

title = "Odds ratio of fractu

Odds ratio of fracture outcome comparing
rior fracture to no prior fracture
( p
odds 10

OR= prior free &
QMS.’FN

ed odds ratio

§-boge
(2/ [

)

60 70 80

E—
90 ‘ 8

— _Age (yearsy—
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How would | report these results?

e Remember our main covariate is prior fracture, so we want to focuse on how age changes the relationship
between prior fracture and a new fracture!

For individuals 69 years old, the estimated odds of a
new fracture for individuals with prior fracture is 2.72
times the estimated odds of a new fracture for
individuals with no prior fracture (95% CI: 1.70, 4.35).

As seenin Figure 1 (a), the odds ratio of a new fracture ) o ) ) )
when comparing prior fracture status decreases with (a) Odds ratio of fracture outcome (b) Predicted probability of fracture
age, indicating that the effect of prior fractures on new comparing prior fracture to no prior

fracture e —

fractures decreases as individuals get older. In Figure 1 —_——

(b)’ itis evident that for both prior fracture statuses, Figure 1: Plots of odds ratio and predicted probability from fitted interaction
the predict probability of a new fracture increases as model

age increases. However, the predicted probability of
new fracture for those without a prior fracture
increases at a higher rate than that of individuals with a
prior fracture. Thus, the predicted nraobabilities of a

new fracture converge at agé.[insert age herél.

- —— =T —
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