Lesson 15: Model Building

With an emphasis on prediction

Nicky Wakim

2024-05-22

Lesson 15: Model Building

Learning Objectives

1. Understand the place of LASSO regression within association and prediction modeling for binary outcomes.

- 2. Recognize the process for tidymodels
- 3. Understand how penalized regression is a form of model/variable selection.
- 4. Perform LASSO regression on a dataset using R and the general process for classification methods.

Learning Objectives

1. Understand the place of LASSO regression within association and prediction modeling for binary outcomes.

- 2. Recognize the process for tidymodels
- 3. Understand how penalized regression is a form of model/variable selection.
- 4. Perform LASSO regression on a dataset using R and the general process for classification methods.

Some important definitions

- Model selection: picking the "best" model from a set of possible models
 - Models will have the same outcome, but typically differ by the covariates that are included, their transformations, and their interactions
 - "Best" model is defined by the research question and by how you want to answer it!

- Model selection strategies: a process or framework that helps us pick our "best" model
 - These strategies often differ by the approach and criteria used to the determine the "best" model

• **Overfitting**: result of fitting a model so closely to our *particular* sample data that it cannot be generalized to other samples (or the population)

Bias-variance trade off

• Recall from 512/612: MSE can be written as a function of the bias and variance

 $MSE = ext{bias}ig(\widehat{eta}ig)^2 + ext{variance}ig(\widehat{eta}ig)$

- We no longer use MSE in logistic regression to find the best fit model, BUT the idea between the bias and variance trade off holds!
- For the same data:
 - More covariates in model: less bias, more variance
 - Potential overfitting: with new data does our model still hold?
 - Less covariates in model: more bias, less variance
 - More bias bc more likely that were are not capturing the true underlying relationship with less variables

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

The goals of association vs. prediction

Association / Explanatory / One variable's effect

- **Goal:** Understand one variable's (or a group of variable's) effect on the response after adjusting for other factors
- Mainly interpret odds ratios of the variable that is the focus of the study

Prediction

- **Goal:** to calculate the most precise prediction of the response variable
- Interpreting coefficients is not important
- Choose only the variables that are strong predictors of the response variable
 - Excluding irrelevant variables can help reduce widths of the prediction intervals

Model selection strategies for *categorical* outcomes

Association / Explanatory / One variable's effect

• Selection of potential models is tied more with the research context with some incorporation of prediction scores

- Pre-specification of multivariable model
- Purposeful model selection $\sqrt{\sim}$
 - "Risk factor modeling"
- Change in Estimate (CIE) approaches
 - Will learn in Survival Analysis (BSTA 514)

Prediction

• Selection of potential models is fully dependent on prediction scores

- Logistic regression with more refined model selection
- Regularization techniques (LASSO, Ridge, Elastic net)
- Machine learning realm
 - Decision trees, random forest, k-nearest neighbors, Neural networks

Before I move on...

- We CAN use purposeful selection from last quarter in **any** type of generalized linear model (GLM)
 - This includes logistic regression!

- The best documented information on purposeful selection is in the Hosmer-Lemeshow textbook on logistic regression
 - Textbook in student files is linked here
 - Purposeful selection starts on page 89 (or page 101 in the pdf)

- I will not discuss purposeful selection in this course
 - Be aware that this is a tool that you can use in any regression!

Okay, so prediction of categorical outcomes

- **Classification:** process of predicting categorical responses/outcomes
 - Assigning a category outcome based on an observation's predictors

- Note: we've already done a lot of work around predicting probabilities within logistic regression
 - Can we take those predicted probabilities one step further to predict the binary outcome??

- Common classification methods (good site on brief explanation of each)
- Logistic regression
 - Naive Bayes
 - k-Nearest Neighbor (KNN)
 - Decision Trees
 - Support Vector Machines (SVMs)
 - Neural Networks

Logistic regression is a classification method

• But to be a good classifier, our logistic regression model needs to built a certain way

- Prediction depends on type of variable/model selection!
 - This is when it can become machine learning

- So the big question is: how do we select this model??
 - Regularized techniques, aka penalized regression

Poll Everywhere Question 1

Learning Objectives

1. Understand the place of LASSO regression within association and prediction modeling for binary outcomes.

2. Recognize the process for tidymodels

3. Understand how penalized regression is a form of model/variable selection.

4. Perform LASSO regression on a dataset using R and the general process for classification methods.

Before I get really into things!!

gln.

- tidymodels is a great package when we are performing prediction
- One problem: it uses very different syntax for model fitting than we are used to...
- tidymodels syntax dictates that we need to define:
 - A model
 - A recipe
 - A workflow

tidymodels with GLOW

To fit our logistic regression model with the interaction between age and prior fracture, we use:

	(
· dus ~	\searrow
FILL)	
(\uparrow)	

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-1.376	0.134	-10.270	0.000	-1.646	-1.120
age_c	0.063	0.015	4.043	0.000	0.032	0.093
priorfrac_Yes	1.002	0.240	4.184	0.000	0.530	1.471
age_c_x_priorfrac_Yes	-0.057	0.025	-2.294	0.022	-0.107	-0.008

Same as results from previous lessons

lenn	estimate :	stu.enoi	Statistic	p.value	COIII.IOW	com.mgn
(Intercept)	-1.376	0.134	-10.270	0.000	-1.646	-1.120
priorfracYes	1.002	0.240	4.184	0.000	0.530	1.471
age_c	0.063	0.015	4.043	0.000	0.032	0.093
priorfracYes:age_c	-0.057	0.025	-2.294	0.022	-0.107	-0.008

Interaction model:

Learning Objectives

1. Understand the place of LASSO regression within association and prediction modeling for binary outcomes.

2. Recognize the process for tidymodels

3. Understand how penalized regression is a form of model/variable selection.

4. Perform LASSO regression on a dataset using R and the general process for classification methods.

Penalized regression

• Basic idea: We are running regression, but now we want to incentivize our model fit to have less predictors

ನ

Include a penalty to discourage too many predictors in the model

- Also known as shrinkage or regularization methods
- Penalty will reduce coefficient values to zero (or close to zero) if the predictor does not contribute much information to predicting our outcome

- We need a tuning parameter that determines the amount of shrinkage called lambda/ λ
 - How much do we want to penalize additional predictors?

Poll Everywhere Question 2

Three types of penalized regression

Main difference is the type of penalty used

Ridge regression

- Penalty called <u>L2 norm</u>, uses solution values
- Pros
 - Reduces overfitting
 - Handles p > n
 - Handles collinearity
- Cons
 - Does not shrink coefficients to 0
 - Difficult to interpret

Lasso regression

- Penalty called L1 norm, uses absolute values
- Pros
 - Reduces overfitting
 - Shrinks coefficients to 0
- Cons
 - Cannot handle p > n
 - Does not handle multicollinearity well

Elastic net regression

• L1 and L2 used, best of both worlds

A shrink vs regulized

- Pros
 - Reduces overfitting
 - Handles p > n
 - Handles collinearity
 - Shrinks coefficients to 0
- Cons
 - More difficult to do than other two

Desert vain frog

Arabian sand boa

Learning Objectives

1. Understand the place of LASSO regression within association and prediction modeling for binary outcomes.

2. Recognize the process for tidymodels

3. Understand how penalized regression is a form of model/variable selection.

4. Perform LASSO regression on a dataset using R and the general process for classification methods.

2. Perform our classification method on training set

• This is where we will use penalized regression!

3. Measure predictive accuracy on testing set

Example to be used: GLOW Study

• From GLOW (Global Longitudinal Study of Osteoporosis in Women) study

• Outcome variable: any fracture in the first year of follow up (FRACTURE: 0 or 1)

- **Risk factor/variable of interest:** history of prior fracture (PRIORFRAC: 0 or 1)
- Potential confounder or effect modifier: age (AGE, a continuous variable)
 - Center age will be used! We will center around the rounded mean age of 69 years old

- Crossed out because we are no longer attached to specific predictors and their association with fracture
 - Focused on predicting fracture with whatever variables we can!

Step 1: Splitting data

- Training: act of creating our prediction model based on our observed data
 Supervised. Means we keep information on our outcome while training
- Testing: act of measuring the predictive accuracy of our model by trying it out on new data
- When we use data to create a prediction model, we want to test our prediction model on new data
 - Helps make sure prediction model can be applied to other data outside of the data that was used to create it!
- So an important first step in prediction modeling is to *split our data* into a **training set** and a **testing set**!

create nodel

Step 1: Splitting data

Training set

- Sandbox for model building
- Spend most of your time using the training set to develop the model
- Majority of the data (usually 80%)

Testing set

- Held in reserve to determine efficacy of one or two chosen models
- Critical to look at it once at the end, otherwise it becomes part of the modeling process
- Remainder of the data (usually 20%)

• Slide content from Data Science in a Box

Poll Everywhere Question 3

Step 1: Splitting data

2

- When splitting data, we need to be conscious of the proportions of our outcomes
 - Is there imbalance within our outcome?
 - We want to randomly select observations but make sure the proportions of No and Yes stay the same
 - We stratify by the outcome, meaning we pick Yes's and No's separately for the training set

- Side note: took out bmi and weight bc we have multicollinearity issues
 - Combo of I hate these variables and my previous work in the LASSO identified these as not important

ane -c

glow = glow1 %>%
dplyr::select(-sub_id, -site_id, -phy_id, -age, -bmi, -weight)

Step 1: Splitting data

- From package rsample within tidyverse, we can use initial_split() to create training and testing data
 - Use <u>strata</u> to stratify by fracture

• Then we can pull the training and testing data into their own datasets

```
1 glow_train = training(glow_split)
2 glow_test = testing(glow_split)
```

Step 1: Splitting data: peek at the split

1 glimpse(glow_train)	1 glimpse(glow_test)
Rows: 400	Rows: 100
Columns: 10	Columns: 10
<pre>\$ priorfrac <fct> No, No, Yes, No, No, Yes, No, Yes, Yes, No, No,</fct></pre>	<pre>\$ priorfrac <fct> No, No, No, No, No, No, No, No, Yes, Yes, No, No,</fct></pre>
No, No,	No, No, No…
\$ height <int> 158, 160, 157, 160, 152, 161, 150, 153, 156, 166,</int>	\$ height <int> 167, 162, 165, 158, 153, 170, 154, 171, 142, 152,</int>
153, 160,	166, 154,
\$ premeno <fct> No, No, No, No, No, No, No, No, No, No,</fct>	\$ premeno <fct> No, No, No, Yes, No, Yes, Yes, Yes, Yes, No, No,</fct>
No, No, No,	No, No, No,
\$ momfrac <fct> No, No, Yes, No, No, No, No, No, No, No, Yes, No,</fct>	<pre>\$ momfrac <fct> No, No, No, No, Yes, No, No, Yes, No, No, No,</fct></pre>
No, No, No…	No, No, No…
\$ armassist <fct> No, No, Yes, No, No, No, No, No, No, No, No, No, No</fct>	\$ armassist <fct> Yes, No, Yes, No, Yes, No, Yes, No, No, No, No, No,</fct>
Yes, No, No…	No, No, No,
\$ smoke <fct> No, No, No, No, Yes, No, No, No, Yes, No,</fct>	\$ smoke <fct> Yes, Yes, No, No, No, No, No, No, No, No, No, No</fct>
No, No, No…	No, No, No…
<pre>\$ raterisk <fct> Same, Same, Less, Less, Same, Same, Less, Same,</fct></pre>	<pre>\$ raterisk <fct> Same, Less, Less, Greater, Same, Same, Same, Same,</fct></pre>
Same, Less, …	Same, Sam
\$ fracscore <int> 1, 2, 11, 5, 1, 4, 6, 7, 7, 0, 4, 1, 4, 2, 2, 7,</int>	\$ fracscore <int> 3, 1, 5, 1, 8, 3, 7, 1, 6, 7, 0, 2, 0, 0, 1, 2, 2,</int>
2, 1, 4, 5,	8, 4, 3,
\$ fracture <fct> No, No, No, No, No, No, No, No, No, No,</fct>	\$ fracture <fct> No, No, No, No, No, No, No, No, No, No,</fct>
No, No,	No, No, No, …
\$ age_c <dbl> -7, -4, 19, 13, -8, -2, 15, 13, 17, -11, -2, -5,</dbl>	\$ age_c <dbl> -13, -10, 3, -8, 17, 0, 6, -5, 1, 17, -11, -6,</dbl>
-1, -2, 0,	-10, -12, -6,

Step 2: Fit LASSO: Main effects: Identify variables

5 >0

<pre>1 library(vip) 2 vi_data_main = glow fit_main %>% 3 pull_workflow fit() %>% 4 Vi(lambda = 0.001) % 5 filter(Importance != 0) 6 vi_data_main</pre>	vi: variable	importance
# A tibble: 9 × 3		

<chr></chr>	<db1></db1>	<chr></chr>
	0.559	POS
2 momfrac_Yes	0.542	POS
3 priorfrac_Yes	0.493	POS
	0.438	POS
5 smoke_Yes	0.376	NEG
6 premeno_Yes	0.285	POS
7 fracscore	0.197	POS
8 armassist_Yes	0.146	POS
9 height	0.0382	NEG
	\sim	•
 Looks like age is ren 	noved!	

Step 2: Fit LASSO: Main effects + interactions

- We want to include interactions in our regression
- The main effect model will be our starting point
 - Otherwise, we may drop main effects but not their interactions
 - Cannot do that: see hierarchy principle
- I remove age_c from this section because main effects did not include it

• This is where things got a little annoying for me...

Step 2: Fit LASSO: Identify interactions

• I combed through the column names of the results to find the interactions

1 vi_data_int\$Variable

[1] "smoke Yes" [3] "smoke Yes x raterisk Same" "momfrac Yes x armassist Yes" [5] "priorfrac Yes" [7] "premeno Yes x raterisk Greater" [9] "priorfrac Yes x momfrac Yes" [11] "premeno Yes x armassist Yes" [13] "priorfrac Yes x raterisk Greater" [15] [17] "fracscore x momfrac Yes" "premeno Yes x raterisk Same" [19] "fracscore x premeno Yes" [21] "fracscore" [23] [25] "armassist Yes x raterisk Same" "height" [27] "priorfrac Yes x raterisk Same" [29] "height x raterisk Greater" [31] "height x fracscore" [33]

"priorfrac Yes x premeno Yes" "armassist Yes x smoke Yes" "momfrac Yes x smoke Yes" "priorfrac Yes x armassist Yes" "momfrac Yes x raterisk Same" "armassist Yes x raterisk Greater" "priorfrac_Yes_x_smoke Yes" "fracscore x priorfrac Yes" "raterisk Same" "fracscore x raterisk Greater" "fracscore x smoke Yes" "momfrac Yes x raterisk Greater" "fracscore x raterisk Same" "height x premeno Yes" "height x armassist Yes"

"smoke Yes x raterisk Greater"

"premeno Yes x smoke Yes"

Step 2: Fit LASSO: Identify interactions

- I combed through the column names of the results to find the interactions
 - I used ChatGPT to help me because I'm pretty new to tidymodels: let's view what I asked

Step 2: Fit LASSO: Create recipe and fit model (from LASSO)

• This is not the typical procedure for LASSO, but the tidymodels framework for interactions did not let me keep all main effects when looking at my interactions

```
glow rec int2 = recipe(fracture ~ ., data = glow train) %>%
     update role(age c, new role = "dont use") %>%
 2
 3
     step dummy(priorfrac, premeno, momfrac, armassist, smoke, raterisk) %>%
 4
 5
     step interact(terms = interaction terms)
 6
   log model = logistic reg()
 8
 9
   glow workflow int2 = workflow() %>%
10
11
         add model(log model) %>% add recipe(glow rec int2)
12
13 glow fit int2 = glow workflow int2 %>% fit(glow train)
```

Step 2: Fit LASSO: Look at model fit

1 print(tidy(glow_fit_int2), n=60)

.

# 1	A tibble: 42 × 5				
	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	3.09	10.3	0.300	0.764
2	height	-0.0415	0.0637	-0.652	0.515
3	fracscore	-2.92	2.15	-1.36	0.175
4	priorfrac_Yes	15.1	8.61	1.75	0.0793
5	premeno_Yes	-0.805	1.14	-0.709	0.478
6	momfrac_Yes	-1.71	1.74	-0.984	0.325
7	armassist_Yes	18.5	10.7	1.73	0.0838
8	smoke_Yes	-22.8	838.	-0.0272	0.978
9	raterisk_Same	16.0	10.1	1.59	0.112
10	raterisk_Greater	1.13	9.16	0.123	0.902
11	height_x_fracscore	0.0215	0.0136	1.58	0.113
12	height_x_priorfrac_Yes	-0.0825	0.0531	-1.55	0.120
13	height_x_armassist_Yes	-0.114	0.0645	-1.77	0.0762
14	height_x_raterisk_Same	-0.0940	0.0623	-1.51	0.131
15	height_x_raterisk_Greater	0.00238	0.0563	0.0423	0.966
16	<pre>fracscore_x_priorfrac_Yes</pre>	-0.373	0.177	-2.10	0.0353
17	<pre>fracscore_x_momfrac_Yes</pre>	0.608	0.313	1.94	0.0520
18	<pre>fracscore_x_armassist_Yes</pre>	-0.111	0.178	-0.626	0.531
19	<pre>fracscore_x_smoke_Yes</pre>	0.604	0.564	1.07	0.284
20	fracscore_x_raterisk_Same	-0.257	0.209	-1.23	0.217
21	fracscore_x_raterisk_Greater	-0.318	0.212	-1.50	0.133
22	priorfrac Yes x premeno Yes	-2.72 Less	son 15: Madel Buchling	-2.56	0.0104

23	priorfrac_Yes_x_momfrac_Yes	-1.35	1.35	-1.00	0.317
24	priorfrac_Yes_x_armassist_Yes	1.45	0.820	1.76	0.0779
25	priorfrac_Yes_x_smoke_Yes	-0.329	1.68	-0.196	0.845
26	priorfrac_Yes_x_raterisk_Same	0.122	0.837	0.146	0.884
27	<pre>priorfrac_Yes_x_raterisk_Greater</pre>	0.838	0.916	0.915	0.360
28	premeno_Yes_x_momfrac_Yes	0.304	1.58	0.192	0.848
29	premeno_Yes_x_armassist_Yes	1.73	0.923	1.87	0.0615
30	premeno_Yes_x_smoke_Yes	-3.98	1.84	-2.17	0.0300
31	premeno_Yes_x_raterisk_Same	0.716	1.16	0.620	0.535
32	premeno_Yes_x_raterisk_Greater	1.71	1.19	1.44	0.150
33	<pre>momfrac_Yes_x_armassist_Yes</pre>	-3.60	1.43	-2.52	0.0118
34	<pre>momfrac_Yes_x_smoke_Yes</pre>	2.73	2.67	1.02	0.307
35	<pre>momfrac_Yes_x_raterisk_Same</pre>	1.87	1.33	1.41	0.160
36	<pre>momfrac_Yes_x_raterisk_Greater</pre>	0.730	1.33	0.548	0.583
37	armassist_Yes_x_smoke_Yes	1.58	1.67	0.948	0.343
38	armassist_Yes_x_raterisk_Same	0.690	0.893	0.774	0.439
39	armassist_Yes_x_raterisk_Greater	-0.247	0.975	-0.253	0.800
40	<pre>smoke_Yes_x_raterisk_Same</pre>	19.5	838.	0.0232	0.981
41	<pre>smoke_Yes_x_raterisk_Greater</pre>	20.0	838.	0.0239	0.981
42	raterisk_Same_x_raterisk_Greater	NA	NA	NA	NA

Poll Everywhere Question 4

Step 3: Prediction on testing set

Step 3: Prediction on testing set

```
1 glow_test_pred = predict(glow_fit_int2, new_data = glow_test, type = "prob") %>%
2 bind cols(glow test)
```

```
1 glow_test_pred %>%
2 roc_auc(truth = fracture,
3 .pred_No)
```

Why is this AUC worse than the one we saw with prior fracture, age, and their interaction?

- Only 1 training and testing set: can overfit training and perform poorly on testing
- We did not tune our penalty
- Our testing set only has 100 observations!

```
1 glow_test_pred %>%
```

```
2 roc_curve(truth = fracture, .pred_No) %>%
```

```
3 autoplot()
```


Cross-validation (specifically k-fold)

- Prevents overfitting to one set of training data
- Split data into folds that train and validate model selection
- Basically subsection of training and testing (called validating) before truly testing on our original testing set

Solutions / Resources (beyond our class right now)

- Use a tuning parameter for our penalty
 - Basically, we need to figure out what the best penalty is for our model
 - We use the training set to determine the best penality
 - Videos that includes tuning parameter with LASSO
 - TidyTuesday video on LASSO with interactions
- Cross-validation
 - Under Cross validation within Data Science in a Box
- For complete video of machine learning with LASSO, cross-validation, and tuning parameters
 - See "Unit 5 Deck 4: Machine learning" on this Data Science in a Box page
 - Video goes through an example with more complicated data, but can be followed with our work!

Summary

- Revisited model selection techniques and discussed how a binary outcome can be treated differently than a continuous outcome
- Discussed association vs prediction modeling
- Discussed classification: a type of machine learning!
- Introduced penalized regression as a classification method
- Performed penalized regression (specifically LASSO) to select a prediction model
- Process presented today has major flaws
 - We did not tune our parameter
 - We did not perform cross validation

For your Lab 4

- You can use purposeful selection, like we did last quarter
 - If you want to focus on **association** modeling!
 - A good way to practice this again if you struggled with it previously
- You can try out LASSO regression
 - If you want to focus on **prediction** modeling!
 - And if you want to stretch your R coding skills