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Learning Objectives

1. Review Generalized Linear Models and how we can branch to other types of regression.

2. Understand what we can measure with Poisson regression and how to interpret coefficients.

3. Understand how to adjust for different follow-up times among individuals
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Review: Generalized Linear Models (GLMs)

I Generalized Linear Models l
Random component | Systematic component Link function \

i * Specify a functional
* Identify the response 1L
variable Y » Specify the form of E(Y) that is

related to the
explanatory variables
through a prediction
equation in linear form

* Specify a suitable explanatory variable(s)
(presumably) for the model

distribution for it
Bor B X




GLM: Random Component

¢ The random component specifies the response variable Y and selects a probability distribution for it

e Basically, we are just identifying the distribution for our outcome
= [fYis ;assumes a distribution of Y

= If Yis count: assumes Poisson or negative binomial distribution of Y

= If Yis continuous: assumea Normal distribution of Y

\
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GLM: Systematic Component

e The systematic component specifies the explanatory variables, which enter linearly

Bo+ B X1+ ...+ B Xy
_—

e Above equation includes:
= Centered variables
» |nteractions

= Transformations of variables (like squares)

¢ Systematic component is the same as what we learned in Linear Models
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GLM: Link Function G(\O

o If u = E(Y), then the link function specifies a function g(. ) that relates u to the linear predictor as:

S&/Zﬁo—Fﬁle—i—---—I—ﬁka

= g () is the transformation we make to E(Y") (aka ,u; 3\15 that the linear predictors (right side of equation) can
be linked to the outcome

¢ The link function connects the random component with the systematic component
e Can also think of this as:

p=g ' (Bo+ X1+ ...+ BiXr)
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%\GLM: Link Function

Ry
Link function Type of response variable Type of regression

§ |[dentity (W) = 1x Continuous response Linear regression
S link g = X1 variables 5
‘SLO link (w) =lo ()é Pl ool Poisson regression
§__g__ gl =108 variable &
§ s g () = logit(y) Categorical response . . .
N Logit link _ H . Logistic regression
= log|——— variable
Q 1—u
$ Categorical response Log-binomial

Log link gw) =log(w

3
- g_,:!

variable regression
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Poll Everywhere Question 1

13:25 Mon Jun 3 T WC 99% (@

Join by Web  PollEv.com/nickywakim275

What is the purpose of a link function?

To transform the predictors/covaraites to a
- linear scale

To make sure the éutcom@follows a normé(
distribution

To make a transformation ofth 0

To minimize the residual sum of squares. 0%

Powered by @ Poll Everywhere
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Poisson Distribution

¢ This distribution is often used to model count data

—

e Examples:

= Distribution of number of deaths due to lung cancer
DEr Of d€ O lung cancer

= Distribution of number of individuals diagnosed with leukemia

= Distribution of number of hospitalizations

G

e This distribution is often used to model rate data 'b WAL bﬂLOVV\L 3 ‘0\ % WPO'\LM

e Examples:

= Distribution of number of deaths due to lung cancer per year

= Distribution of number of individuals diagnosed with leukemia over follow-up time
. . . . . . __\
= Distribution of number of hospitalizations ifWa/day

v
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Example 1: Horseshoe Crabs and Satellites

Example of count data:

Each female horseshoe crab in the study had a male
crab attached to her in her nest. The study investigated
factors that affect whether the female crab had any
other males, called satellites, residing near her.
Explanatory variables that are thought to affect this
included the female crab’s color, spine condition, and
carapace width, and weight. The response outcome for
each female crab is the number of satellites. There are
173 females in this study.

1 (rsq)
2 (hcrabs)
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Poisson Distribution with a count

¢ The probability function of Poisson distribution:
|

(data = hcrabs) +
( (x = num.satellites))

Pl - 2" B

'—'-
= Wher@are non-negative integers
y =0, 1! 2! ..

= Where p isthe meanof Y, thatis E(Y) = u
= Andalso,var(Y) = u

* For a Poisson distribution, Y ~ Poisson(u)

—_—
= Range: [0, 00)
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Poll Everywhere Question 2

13:35 Mon Jun 3

Join by Web  PollEv.com/nickywakim275

From our GLOW study, our outcome measured if an individual had any
fracture in the past year of follow-up. What question could we ask
individuals if we wanted an outcome that followed a Poisson
distribution?

Have you had a fracture in the past year? 0%

Have you had multiple fractures in the past
year?

How many fractures have you had in the
past year?0 100%

0%

Powered by 0 Poll Everywhere
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Example 2: Lung Cancer Incidence

Example o
We can look at the lung cancer incident counts (cases) per age group for four Danish cities from 1968 to 1971.

Since it’s reasonable to assume that the expected count of lung cancer incidents is proportional to the population

size, we would prefer to model the rate of incidents per capita.

1 (ISWR)
2 (ebald77)
3 1lc _inc = ebal977 %>% (lpop = Sgop))
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Poisson Distribution with a rate
e |f we look at the probability of y eventsin a tlme period t for a Poisson random variable, we could write:

p(y:y@:M:QM' AL rabe xthwe
y! y! ()&’t : rﬂ){e X p

op
= Where y’s are non-negative integersy = 0,1, 2, . [/U\/{/l-
= Where £1=, At, where A is the expected number of events per unit time (aka rate)

= Then w is the expected number of events over time ¢ e Vf/}’l'f F‘&V [000 fFe
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What does ) represent in the Poisson distribution?

e What does A represent?

= Arate, the expected number of events in a given population over a given period time
P I S —

e Example: Number of patient arrivals into the Emergency Room per hour y

e ——

e The Poisson distribution is the prototype for assigning probabilities of observing any number of events
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Review: Simple Logistic Regression

e LetYisthe dependent variable of interest and x is a predictor variable,

= Insimple Iogisiilc regression, we have

S m(X) \ _ ¥
5 Qoe (15 ) ~ o

= where(X) =P(Y =1]| X =z) 6\15
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Simple Poisson Regression Model

¢ What do we model in a Poisson regression?

¢ Log of conditional mean of Y given x

—————

= Conditional mean of Y given x is represented as E(Y" | X) :G(X)
= Let Y be a Poisson count for a given unit of time, then p(X) = A(X
= |n asimple Poisson regression, we have \09 Q}\V\,V_,

((»=@+mx

Sys
e Sothisis aésﬂo called & \ blhw 0
5 § Tor count : VQ/D% bl'm,ovvuo&l YI‘.’,(jrCQS\oV\, |
FS " Thoisson regressin- L line & wwmﬂ‘
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Parameter Interpretation: Binary X (1/2)
¢ Insimple Poisson regression: /, X:
In ) = In(A(X)) = Bo + X

e When X is a binary variable: How do we interpret 31?

= When X = 0: Eo: b? (/{/._(X:O>>
ln(:u'(X:O)) :BO‘I‘B‘LQ F’ v (X _:O'>
Aol SAN
o u(X = 0) = exp(By): the mean count or rate of Y when X -0
= When X = 1: I

o —

In(u(X = 1)) = By + 61@: Bo -+ By

—_——

o u(X =1) =exp(Bo+ Bﬁ:tfman countor rateof Y when X =1
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Parameter Interpretation: Binary X (2/2)

e When X is a binary variable: How do we interpret 5;? — _QL_
= By subtraction, we have l 0@ (0'/) - (0 %<b> wfa'( D>
)
), gty _ pX=1) — 1
B+ In(u(X — 1)) ~ (X = 0) Y £ = )
= (31: log-count ratio or log-rate ratio C/O‘N\/Pa/vi (Aoa X={( 4o X=0
o Since p(X) is A(X) is the rate of Y’

= So exp(/31) is the count or rate ratio!

—— = =

W

\ﬂ#/ £ (1 [%=1) - E(¥ [x=0)

T
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Parameter Interpretation: Continuous X

* When X is a continuous variable: How do we interpret_ﬂg?
= (: log-count or log-rate when X is Q
= So exp(f) is the expected count or rate when X'is O

e When X is a continuous variable: How do we interpret 5;?

= 31: log-count ratio or log-rate ratio for every 1 unit increase in X

S —

o Since u(X) is A(X) is the rate of Y’

= So exp(f;) is the rate ratio for every 1 unit increase in X
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Example 1: Horseshoe Crabs and Satellites

1 (hcrabs 1 crab mod = (num.satellites ~ width,
2 (x 2 = family=poisson,
3 y=num.satellites)) + 3 data=hcrabs)
4 (size = 2) 4 (crab mod, conf.int=T,
5 exponentiate=T) %>%
— . 6 () %>%
7 (table.font.size = ) %>%
% . . . 8 (decimals = 2)
% TN B = § . term estimate std.error statistic p.value conf.low conf.high
“) E R SR N (Intercept) 0.04 054 -6.09 0.00 0.01 0.11
oo e o w o e o wese . 7SN
ﬁ R A S I width (118 002 822 000 113 123

L] L] L] L] L X ] L X ] o0 o L]

aﬁ- L] L] ® 000 G0 G000 00000 00000 O 00000 O 00 000

A
25 \/\/ ‘M&CO\A’V\& {(7‘-*:\0" QXP(%I)

U
Interpretation: For eve'rﬂ-'cm’in’c;ase in carapace width, the exeecteg number of satellites increases by 18%
(95% Cl: 13%, 23%).
——/‘
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Example 2: Lung Cancer Incidence

/4

. [ ————

1 (lc_inc, (x=age, y=cases, 1 1c mod = (@’ city + age,
2 color = city)) + 2 -Qoffset=;gog,Q 70‘7 PP

3 (size = 2) 3 family=poisson, C/e;q
4 data=lc_inc)
| » Regression table

L ’ term estimate std.error statistic p.value conf.low conf.high
T T T T T (k;(lntercept) 0.004 0.200 -28.125 0.000 0.002 0.005

cityHorsens | 0.719 0.182 -1.818 0.069 0.503 1.026
| cityKolding | 0.690 0.188 -1.978 0.048 0.476 0.995
I I I ’ cityVejle 0.762 0.188 -1.450 0.147 0.525 1.099
. ge55-59  3.007 0.248 4.434 0.000 1.843 4.901

age60-64 4566 0.232 6.556 0.000 2.907 7.236

age65-69  5.857 0.229 7.704 0.000 3.748 9.249

— ! age70-74  6.404 0.235 7.891 0.000 4.043 10.212
@) - age75+ 4136 0250 5672 0.000 2523 6.762
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Poll Everywhere Question 3

14:02 Mon Jun 3

Join by Web  PollEv.com/nickywakim275

How would you interpret the exponentiated coefficient estimate
for the intercept (which is 0.004, showing 0.00 in table)?

Fredericia, the estimated awessge rate of lung cancer is
0.004 per person (95%Cl: 0.003, 0.005).

For people in age group 40-54 and in the city of
Fredericia, the estimated rate ratio of lung canceris...
T

J For people in age group 40-54 and in the city of

The expected rate ratio comparing the city o
to Hobg€ns is 0.004, adjusting for age (95% CI: 0.003,...

The expected rate comparing the city of Fredericia to
Horsens is 0.004, adjusting for age (95% Cl: 0.003, 0.005).

- L d 4.
Instructions Responses Correctness ¢ More X Clear responses

(5> Exit

27



Learning Objectives

1. Review Generalized Linear Models and how we can branch to other types of regression.

2. Understand what we can measure with Poisson regression and how to interpret coefficients.

3. Understand how to adjust for different follow-up times among individuals
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Building towards person-years

* |In an example of number of patient arrivals, an event does not conclude the study
= |f someone arrives within the first minute of the study, then we keep counting

= We may be able to study the association of arrivals with qualities of the hospital, but we can’t measure
qualities of the individuals arriving

e For example, in the lung cancer study, we can only discuss the incidence of cancer at the city-wide level

e What happens if we want to measure qualities of the individual?

= We can measure a hospitalization rate

Lesson 16: Poisson Regression
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Why Person-Years?

 |f we are measuring at the individual level and counting something that is “terminal” then our count will always
beOor1

= Example: Number of individuals diagnosed with leukemia

= This only happens once, so how do we measure the rate here?

e Since rate involves the counts and time - we can use the time to diagnosis to estimate the rate

= Often expressed in units such as events per thousand person-years

e Person-years allow us to follow individuals for different amounts of time

Lesson 16: Poisson Regression
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What is a Person-Year and how to calculate?

e One person-year is a unit of time defined as one person being followed for one year

e Person-years for a sample of n subjects is calculated as the total years followed for the n subjects, where each
subject could have different follow-up time

e Example: suppose we have 5 subjects, two of the subjects were followed for 2 years, and two of them are
followed for 3 years and the fifth subject was followed for 3.8 years

person-years = 2 people - 2 years + 2 people - 3 years + 1 person - 3.8 years = 13.8 person-years

Lesson 16: Poisson Regression
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Calculating Rate

e Suppose that we observe one event during the follow-up period, then

events 1 event
Rate of event = " =

person-years  13.8person-years
= 0.072 events per person—year
= 72 events per 1000 person—years

* Now our rate of event is measured per person-year

= Often use 1000 person-years to count the events with whole numbers

Lesson 16: Poisson Regression
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Including an offset when we have different follow-up times

e What if we have data that each observation has different period of time?

= For example, we look at number of ED visits when subjects are enrolled in Oregon Health Plan, however,
each subjects are enrolled in the plan for different length of time...

= How do we incorporate this different length of time?
 Note we have: u = At and with predictor X, u(X) = A(X) - t(X)
= tis now afunction of the individual, represented with X

e Then we construct:

In(A(X)) =Bo + A1 X

Lesson 16: Poisson Regression
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Including an offset when we have different follow-up times
e Thatis, to incorporate the different lengths in the model,
In(p(X)) = In(t(X)) + Bo + BrX

» We have one more term in the model and this term is called offset, a known term in the model since ¢(X) is
known for each individual

e In(¢(X)) is called the offset

e Offsets can also be something like the population size in a city...

Lesson 16: Poisson Regression
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Example 2: Lung Cancer Incidence

1 1lc mod (cases city age, offset=lpop, family=poisson,
2 (lc_mod)
Call:
glm(formula = cases ~ city + age, family = poisson, data = lc_inc,
offset = lpop)
Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -5.6321 0.2003 -28.125 < 2e-16 **%*
cityHorsens -0.3301 0.1815 -1.818 0.0690 .
cityKolding -0.3715 0.1878 -1.978 0.0479 +*
cityVejle -0.2723 0.1879 -1.450 0.1472
age55-59 1.1010 0.2483 4.434 9.23e-06 **x
age60-64 1.5186 0.2316 6.556 5.53e-11 **%*
age65-69 1.7677 0.2294 7.704 1.31le-14 **x*
age70-74 1.8569 0.2353 7.891 3.00e-15 ***
age75+ 1.4197 0.2503 5.672 1.41e-08 ***
Signif. codes: 0 '***x' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

(Dispersion parameter for poisson family taken to be 1)

Null deviance:

Residual deviance:

AIC: 137.84

129.908
23.447

on 23
on 15

degrees of freedom
degrees of freedom
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Number of Fisher Scoring iterations:

5
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Further reading / tutorials on Poisson regression

e Good tutorialinR

e When people are followed for different amounts of time, we should include an offset
= Poisson Regression Modeling Using Rate Data: section from above site that discusses offsets

e We can use Wald test and LRT in the same way as logistic regression to test our coefficients and variables

Lesson 16: Poisson Regression
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https://www.dataquest.io/blog/tutorial-poisson-regression-in-r/

