Lesson 17: Wrap-up and other regressions

Nicky Wakim

2024-06-05

Lesson 17: Wrap-up and other regressions

Animals of the day

Today

- Let's zoom out a little and see what types of regressions we can do
- You should have the main tools to perform these regressions
 - Each has some nuances, but I'll give you sources that help walk you through them

Types of regressions

Dist'n of Y	Typical uses	Link name	Link function	Common name
Normal 52	Linear-response data	Identity	$g(\mu)=\mu$	Linear regression
Bernoulli / 513 Binomial	outcome of single yes/no occurrence	Logit	$g(\mu) = { m logit}(\mu)$	Logistic regression
Poisson, 513	count of occurrences in fixed amount of time/space	Log	$g(\mu) = \underbrace{\log(\mu)}$	Poisson regression
Bernoulli / Binomial	outcome of single yes/no occurrence	Log	$g(\mu) = \log(\mu)$	Log-binomial regression
Multinomial	outcome of single occurence with K > 2 options, <i>nominal</i>	Logit	$g(\mu) = ext{logit}(\mu)$ (Multinomial logistic regression
Multinomial	outcome of single occurence with K > 2 options, <i>ordinal</i>	Logit	$g(\mu) = ext{logit}(\mu)$	Ordinal logistic regression

Linear regression

• Outcome type: continuous

- Example outcomes:
 - Height
 - IAT score •
 - Heart rate •

- Population model $E(Y \mid X) = \mu = \beta_0 + \beta_1 X$ • Interpretations
 - The change in average Y for every 1 unit increase in X

Linear regression resources

- 512/612 class site!!
- Online textbook by Dr. Nahhas

Logistic regression

- Outcome type: binary, yes or no
- Example outcomes:
 - Food insecurity —
 - Disease diagnosis for patient —
 - Fracture —

- Population model $\log(\mu) = \beta_0 + \beta_1 X$ • Interpretations
- Interpretations
- The log-odds ratio for every 1 unit increase in X

Logistic regression resources

• Online textbook by Dr. Nahhas

Poisson Regression

• Outcome type: Counts or rates

• Population model

Interpretations

- Example outcomes:
 - Number of children in household —
 - Number of hospital admissions —
 - Rate of incidence for COVID in US counties —

The count (or rate) ratio for every 1 unit increase in X

Bi: log count ratio

Poisson Regression resources

- PennState 504 website
- Online textbook by Dr. Nahhas
- YouTube video on R tutorial for Poisson Regression
 - Dr. Fogerty is a professor in Political Science, so just beware they may not have formal statistical training
- Guided R tutorial page on Poisson regression
- Online textbook by Dr. Werth
 - Social scientist, so just beware they may not have formal statistical training

Log-binomial Regression

- Outcome type: binary, yes or no
- Example outcomes:
 - Food insecurity
 - Disease diagnosis for patient
 - Fracture

- Population model $\log(\mu) = \beta_0 + \beta_1 X$
- Interpretations

β, =

17

• We have <u>log of probability</u> on the left

logi

• So exponential of our coefficients will be risk ratio

Lesson 17: Wrap-up and other regressions

Log-binomial Regression resources

- Online textbook by Dr. Nahhas
- Article on logbin package that is used to fit log-binomial regression

Multinomial logistic regression

- Outcome type: multi-level categorical, no inherent order
- Example outcomes:
 - Blood type
 - US region (from WBNS)
 - Primary site of lung cancer (upper lobe, lower lobe, overlapped, etc.)
- We have additional restriction that the multiple group probabilities sum to 1

+ p(Y=1) p(Y = 2) = 1

 $(git(Mgp2) \rightarrow \log(Mgp2))$ $Population models \quad \exists gps \quad [I - Mgp2] \\ log(Mgroup 2) \\ \mu group 1) = \beta_0 + \beta_1 X \\ log(\frac{\mu group 3l}{\mu group 1}) = \beta_0 + \beta_1 X \\ gp \exists \forall s gp d y d y gp d ygp d y gp d y gp d ygp d y gp d y gp d ygp d ygp d y gp d ygp$

- Basically fitting two binary logistic regressions at same time!
- First equation: how a one unit change in X changes the log-odds of going from group 1 to group 2
- Second equation: how a one unit change in X changes the log-odds of going from group 1 to group 3

Multinomial logistic regression resources

- YouTube video on R tutorial for Poisson Regression
 - Again, Dr. Fogerty is a professor in Political Science
- R-bloggers post with guided R code
- Online textbook by Dr. Werth with data and R script

Ordinal logistic regression

- Outcome type: multi-level categorical, with inherent Population models , with levels k = 1, 2, 3, order
- Example outcomes:
 - Satisfaction level (likert scale) —
 - Pain level
 - Stages of cancer
- When these variables are predictors, we are pretty lenient about treating them as continuous
 - We must be VERY STRICT when they are outcomes
 - They do not meet the assumptions we place on continuous outcomes in linear regression!!
- We have additional restriction that the multiple group probabilities sum to 1

• Interpretations

log

log

- Basically fitting K binary logistic regressions at same time!
- First equation: how a one unit change in X changes the log-odds of going from group 1 to any other group
- Second equation: how a one unit change in X changes the log-odds of going from group 1 or 2 to group 3 or above

Ordinal logistic regression resources

- Online textbook by Dr. Nahhas
- Online textbook by Dr. Werth with data and R script

Even more regressions...

Even more r	egressions	P(X=x) 1			
Dist'n of Y	Typical uses	Link name	Link function \checkmark	Common name	
Bernoulli / Binomial	outcome of single yes/no occurrence	Probit	$g(\mu) = \Phi^{-1}(\mu)$ inverse CDF	Probit regression	
Bernoulli / Binomial	outcome of single yes/no occurrence	Complementary log-log	$g(\mu) = \log(-\log(1-\mu))$	Complementary log-log regression	
Multinomial	outcome of single occurence with K > 2 options, <i>nominal</i>	Probit	$g(\mu)=\Phi^{-1}(\mu)$	Multinomial probit regression	
Multinomial	outcome of single occurence with K > 2 options, <i>ordinal</i>	Probit	$g(\mu)=\Phi^{-1}(\mu)$	Ordered probit regression	

More regression resources

- Probit regression
- Complementary log-log
- Multinomial probit
- Ordered probit

General resources

- Dr. Fogerty's YouTube series
- Dr. Werth's Categorical Book
- Dr. Nahhas' Book
 - The Epidemiologist R Handbook
 - Analysis AND R work Biostarlisticans

Moment of appreciation for your growth

- Remember when we were learning simple linear regression...
- This was a slide from our second week together:

• Even if you don't feel like you learned everything, you have learned a lot from the first time you saw the above slide