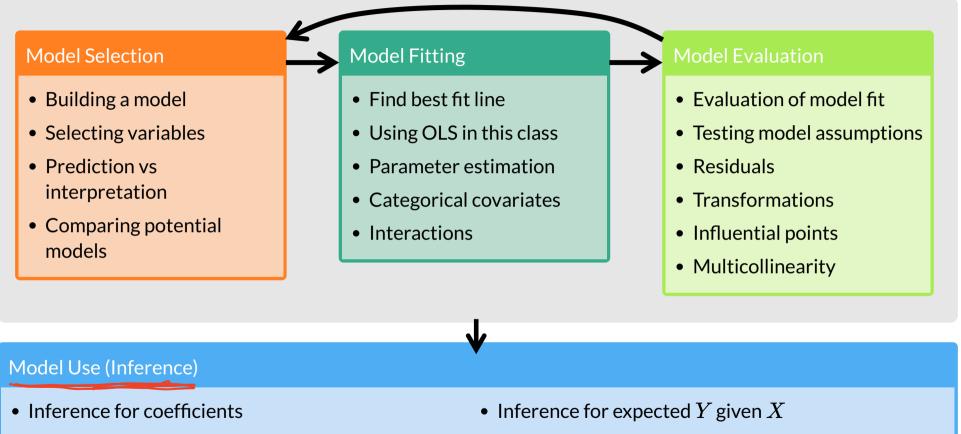
SLR: Inference and Prediction

Nicky Wakim 2023-01-22

Learning Objectives

- 1. Estimate the variance of the residuals
- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Let's revisit the regression analysis process



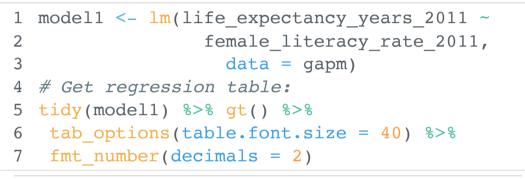
• Hypothesis testing for coefficients

4

• Prediction of new Y given X

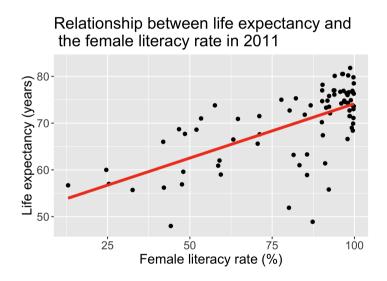
Let's remind ourselves of the model that we fit last lesson

- We fit Gapminder data with female literacy rate as our independent variable and life expectancy as our dependent variable
- We used OLS to find the coefficient estimates of our best-fit line



term	estimate std.error statistic p.value						
(Intercept)	50.93	2.66	19.14	0.00			
female_literacy_rate_2011	0.23	0.03	7.38	0.00			

$$\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$
 $ext{life expectancy} = 50.9 + 0.232 \cdot ext{female literacy rate}$



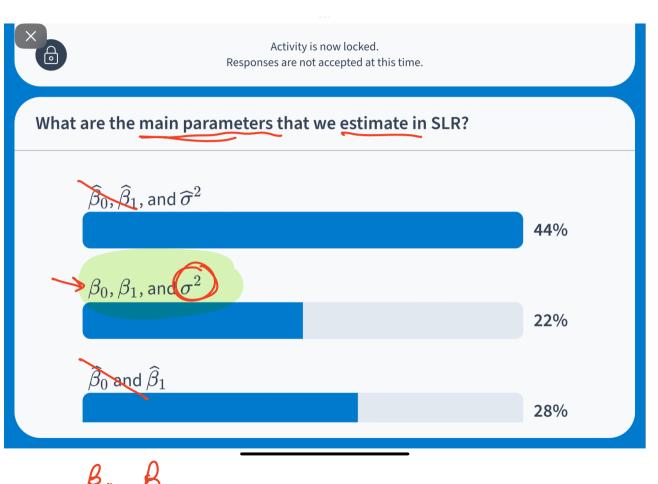
Fitted line is derived from the population SLR model

The (population) regression model is denoted by:

 $Y = \beta_0 + \beta_1 X + \epsilon$

- eta_0 and eta_1 are **unknown** population parameters
- ϵ (epsilon) is the error about the line
 - It is assumed to be a random variable with a...
 - $\,\circ\,$ Normal distribution with mean 0 and constant variance σ^2
 - \circ i.e. $\epsilon \sim N(0,\sigma^2)$

Poll Everywhere Question 1



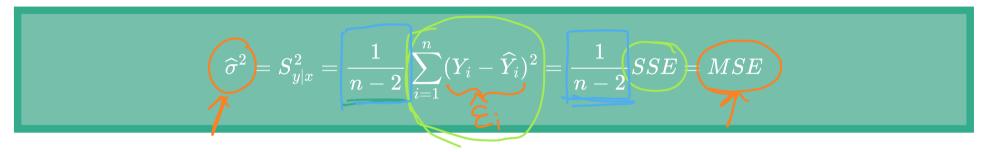
Learning Objectives

1. Estimate the variance of the residuals

- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

$\widehat{\sigma}^2 {:}$ Needed ingredient for inference

- Recall our population model residuals are distributed by $\epsilon \sim N(0,\sigma^2)$
 - And our estimated residuals are $\hat{\epsilon} \sim N(0, \widehat{\sigma}^2)$
- Hence, the variance of the errors (residuals) is estimated by $\widehat{\sigma}^2$



$\widehat{\sigma}^2:$ I hope R can calculate that for me...

- The standard deviation $\hat{\sigma}$ is given in the R output as the <u>Residual standard error</u>
 - 4th line from the bottom in the summary() output of the model:

```
1 summary(model1) $ Sigma
```

```
Call:
lm(formula = life expectancy years 2011 ~ female literacy rate 2011,
   data = gapm)
Residuals:
   Min
            10 Median
                           30
                                  Max
                                             6.142
-22.299 -2.670
               1.145
                       4.114
                                9.498
Coefficients:
 1 # number of observations (pairs of data) used to run the model
 2 nobs(model1)
```

[1] 80

glance (model1)

$\widehat{\sigma}^2$ to SSE

- Recall how we minimized the SSE to find our line of best fit
- SSE and $\hat{\sigma}^2$ are closely related:

$$\hat{E} \sim N(0, \frac{\hat{b}}{6.142})$$

 $N(M_1 o^2)$

• 2942.48 is the smallest sums of squares of all possible regression lines through the data

 $\widehat{\sigma}^{2} = \frac{1}{\frac{n-2}{N}SSE}$ $6.142^{2} = \frac{1}{\frac{1}{80-2}SSE}$

 $SSE = 78 \cdot 6.142^2 = 2942.48$

Learning Objectives

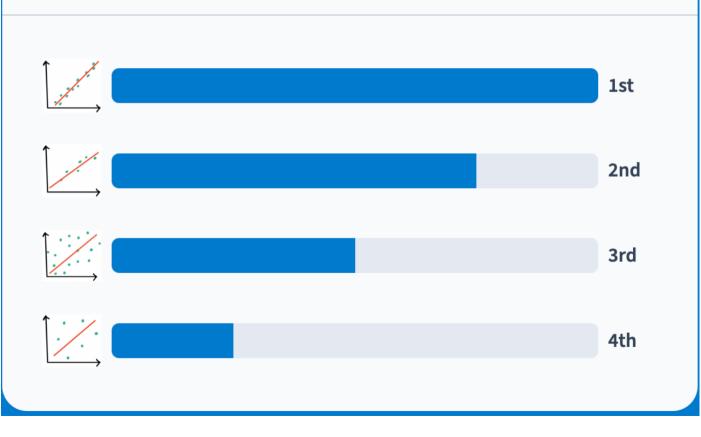
1. Estimate the variance of the residuals

- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)
- 4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Do we trust our estimate $\widehat{\beta}_1$?

- estimate of B,
- So far, we have shown that we think the estimate is 0.232
- \widehat{eta}_1 uses our sample data to estimate the population parameter eta_1
- Inference helps us figure out mathematically how much we trust our best fit line the Slope of the
- Are we certain that the relationship between X and Y that we estimated reflects the true, underlying relationship?

Poll Everywhere Question 2



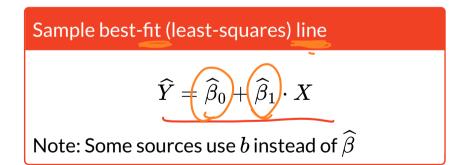
Inference for the population slope: hypothesis test and CI

Population model

line + random "noise"

$$Y=\beta_0+\beta_1\cdot X+\varepsilon$$

with $arepsilon \sim N(0,\sigma^2)$ σ^2 is the variance of the residuals



We have two options for inference:

1. Conduct the hypothesis test

 $H_0:eta_1=0 \ {
m vs.}\ H_A:eta_1
eq 0$

Note: R reports p-values for 2-sided tests

2. Construct a 95% confidence interval for the population slope β_1

Learning Objectives

1. Estimate the variance of the residuals

2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)

3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)

4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Steps in hypothesis testing

- Check the assumptions regarding the properties of the underlying variable(s) being measured that are needed to justify use of the testing procedure under consideration.
 State the null hypothesis H₀ and the alternative hypothesis H₄.
- 3. Specify the significance level α .
- 4. Specify the test statistic to be used and its distribution under H_0 .

Critical region method

- 5. Form the decision rule for rejecting or not rejecting H_0 (i.e., specify the rejection and nonrejection regions for the test, based on both H_A and α).
- 6. Compute the value of the test statistic from the observed data.

p-value method

- 5. Compute the value of the test statistic from the observed data.
- 6. Calculate the p-value

7. Draw conclusions regarding rejection or nonrejection of H0.

$+ \sim + - dist'n$ General steps for hypothesis test for population slope β_1 5. Compute the value of the test statistic 1. For today's class, we are assuming that we have met the underlying assumptions (checked in our The calculated **test statistic** for β_1 is Model Evaluation step) > under 2. State the null hypothesis. Often, we are curious if the coefficient is 0 or not: $H_0: egin{array}{c} eta_1 = 0 \ ext{vs.} \ H_A: eta_1 eq 0 \end{array}$ when we assume $H_0:eta_1=0$ is true. 6. Calculate the p-value \Im^{\times} P(We are generally calculating: P(t>tst)3. Specify the significance level. t^{\star}). Write conclusion for hypothesis test Often we use $\alpha = 0.05$ 4. Specify the test statistic and its distribution under We (reject/fail to reject) the null hypothesis that the the null slope is 0 at the $100\alpha\%$ significance level. There is (sufficient/insufficient) evidence that there is

The test statistic is t, and follows a Student's tdistribution.

significant association between (Y) and (X) (p-value) Val > 0 oc = P(t > t*)).

Standard error of fitted slope $\widehat{\beta}_1$

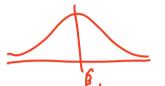
$$\mathrm{SE}_{\widehat{eta}_1} = rac{s_{\mathrm{residuals}}}{s_x \sqrt{n-1}}$$

variance $s^2_{
m residuals}$ is the ${\cal G}$ of the residuals σ is sd σ^2 var

variable x

.

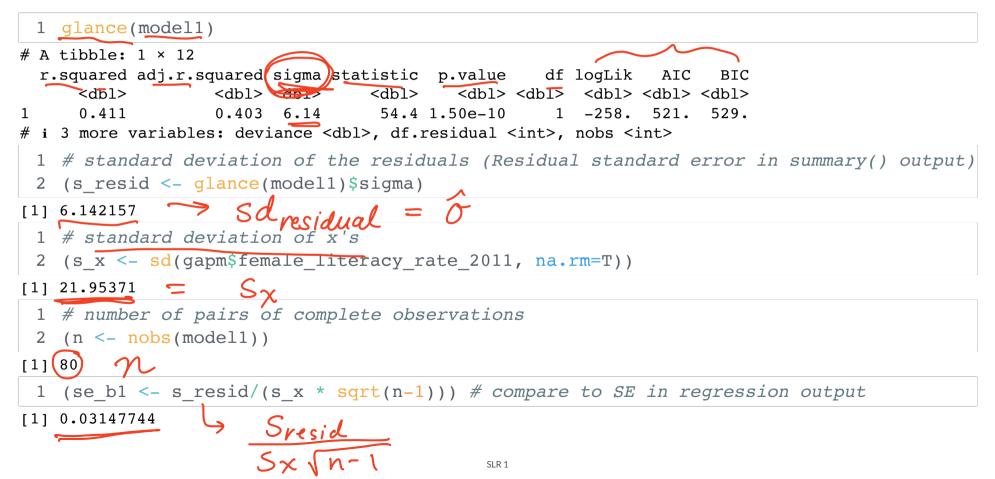
 $\operatorname{SE}_{\widehat{eta}_1}$ is the **variability** of the statistic \widehat{eta}_1



• s_x is the sample sd of the explanatory • n is the sample size, or the number of (complete) pairs of points

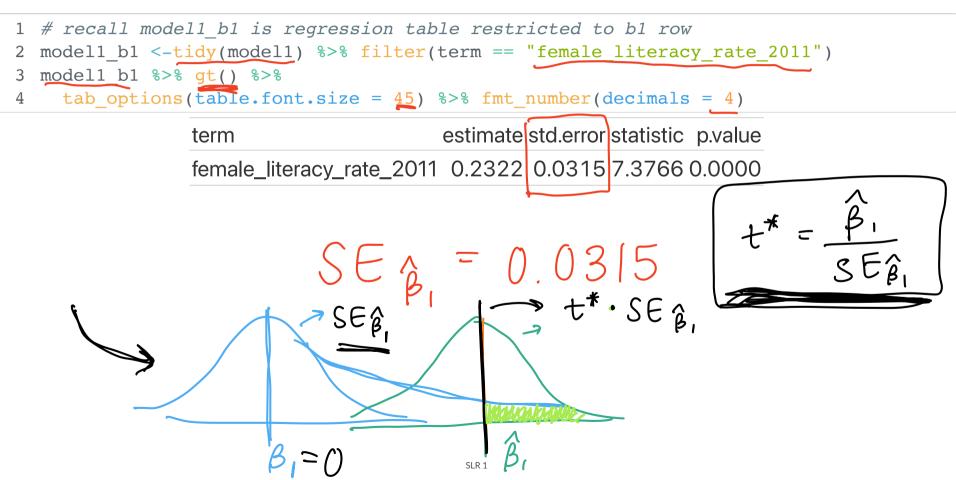
Calculating standard error for $\widehat{\beta}_1$ (1/2)

• Option 1: Calculate using the formula



Calculating standard error for $\widehat{\beta}_1$ (2/2)

• Option 2: Use regression table



Some important notes

- Today we are discussing the hypothesis test for a **single** coefficient
- The test statistic for a single coefficient follows a Student's t-distribution
 - It can also follow an F-distribution, but we will discuss this more with multiple linear regression and multilevel categorical covariates

- Single coefficient testing can be done on any coefficient, but it is most useful for continuous covariates or binary covariates
 - This is because testing the single coefficient will still tell us something about the overall relationship between the covariate and the outcome
 - We will talk more about this with multiple linear regression and multi-level categorical covariates

Poll Everywhere Question 3

×	Activity is now locked. Responses are not accepted at this time.	
True the t	or false: We can test multiple coefficients at the same tin test.	ne using
	True	16%
	False	84%

t-test:
$\beta_0 = 0$
$vs \beta_0 \neq 0$
۱
breaks:
$ \rightarrow \beta_0 = \beta_1 = 0 $
$VS. \beta_0 \neq 0$ or
$\beta_i \neq 0$

Life expectancy example: hypothesis test for population slope β_1 (1/4)

- Steps 1-4 are setting up our hypothesis test: not much change from the general steps
- 1. For today's class, we are assuming that we have met the underlying assumptions (checked in our Model Evaluation step)

2. State the null hypothesis.

We are testing if the slope is 0 or not:

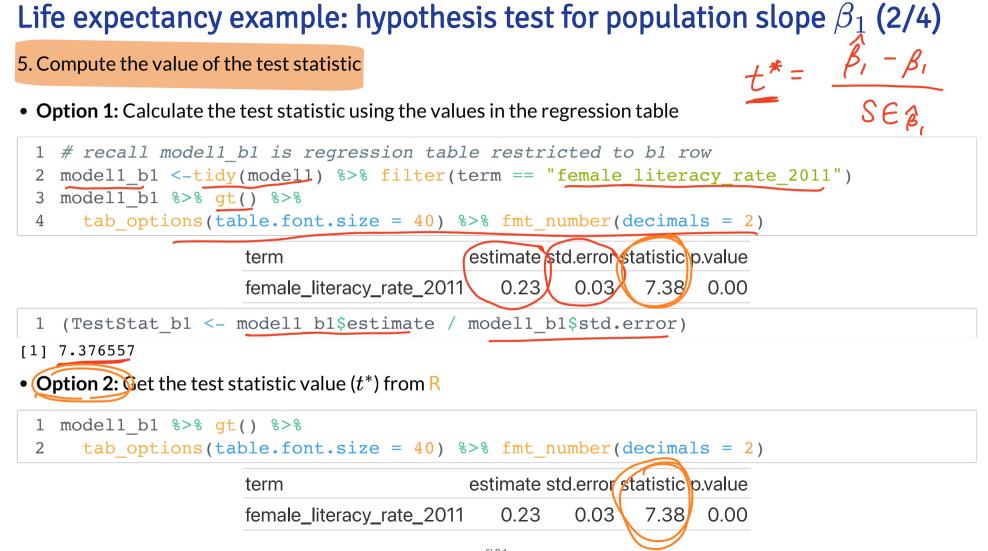
$$egin{aligned} H_0:eta_1=0\ ext{vs.}\ H_A:eta_1
eq 0 \end{aligned}$$

3. Specify the significance level.

Often we use lpha=0.05

4. Specify the test statistic and its distribution under the null

The test statistic is t, and follows a Student's t-distribution.



Life expectancy example: hypothesis test for population slope β_1 (3/4)

6. Calculate the p-value

- The *p*-value is the probability of obtaining a test statistic **just as extreme or more extreme** than the **observed** test statistic assuming the null hypothesis H_0 is true $\longrightarrow \beta_1 = 0$
- We know the probability distribution of the test statistic (the null distribution) assuming H_0 is true
- Statistical theory tells us that the test statistic t can be modeled by a t-distribution with df = n 2.
 - We had 80 countries' data, so n=80
- **Option 1:** Use pt() and our calculated test statistic

```
1 (pv = 2*pt(TestStat_b1, df=80-2, lower.tail=F))
[1] 1.501286e-10
```

• Option 2: Use the regression table output

Life expectancy example: hypothesis test for population slope β_1 (4/4)

7. Write conclusion for the hypothesis test

We reject the null hypothesis that the slope is 0 at the 5% significance level. There is sufficient evidence that there is significant association between female life expectancy and female literacy rates (p-value < 0.0001).

Note on hypothesis testing using R

• We can basically skip Step 5 if we are using the "Option 2" route

- In our assignments: if you use Option 2, Step 5 is optional
 - Unless I specifically ask for the test statistic!!

REFERENCE Life expectancy ex: hypothesis test for population intercept β_0 (1/4)

- Steps 1-4 are setting up our hypothesis test: not much change from the general steps
- 1. For today's class, we are assuming that we have met the underlying assumptions (checked in our Model Evaluation step)

2. State the null hypothesis.

We are testing if the intercept is 0 or not:

$$H_0:eta_0=0$$
 vs. $H_A:eta_0
eq 0$

3. Specify the significance level

Often we use lpha=0.05

4. Specify the test statistic and its distribution under the null

This is the same as the slope. The test statistic is t, and follows a Student's t-distribution.

Life expectancy ex: hypothesis test for population intercept β_0 (2/4)

5. Compute the value of the test statistic

• Option 1: Calculate the test statistic using the values in the regression table

```
1 # recall model1_b1 is regression table restricted to b1 row
2 model1_b0 <-tidy(model1) %>% filter(term == "(Intercept)")
3 model1_b0 %>% gt() %>%
4 tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)
```

	term	estimate std.error statistic p.value			
	(Intercept)	50.93	2.66	19.14	0.00
1 (TestStat_b0 <- model1	_b0\$estim	nate / mo	del1_b	0\$std.e	error)

[1] 19.1429

• Option 2: Get the test statistic value (t*) from R

```
1 model1_b0 %>% gt() %>%
2 tab_options(table.font.size = 40) %>% fmt_number(decimals = 2)
term estimate std.error statistic p.value
```

Life expectancy ex: hypothesis test for population intercept β_0 (3/4)

6. Calculate the p-value

• **Option 1:** Use pt() and our calculated test statistic

1 (pv = 2*pt(TestStat_b0, df=80-2, lower.tail=F))

[1] 3.325312e-31

• Option 2: Use the regression table output

```
1 model1_b0 %>% gt() %>%
2 tab_options(table.font.size = 40)
```

termestimatestd.errorstatisticp.value(Intercept)50.92792.66040719.14293.325312e-31

Life expectancy ex: hypothesis test for population intercept β_0 (4/4)

7. Write conclusion for the hypothesis test

We reject the null hypothesis that the intercept is 0 at the 5% significance level. There is sufficient evidence that the intercept for the association between average female life expectancy and female literacy rates is different from 0 (p-value < 0.0001).

• Note: if we fail to reject H_0 , then we could decide to remove the intercept from the model to force the regression line to go through the origin (0,0) if it makes sense to do so for the application.

Learning Objectives

1. Estimate the variance of the residuals

2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)

3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)

4. Calculate and report the estimate and confidence interval for the expected/mean response given X

Inference for the population slope: hypothesis test and CI

Population model

line + random "noise"

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon$$

with $arepsilon \sim N(0,\sigma^2)$ σ^2 is the variance of the residuals

Sample best-fit (least-squares) line

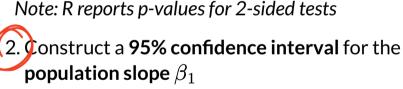
$$\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 \cdot X$$

Note: Some sources use b instead of $\widehat{\beta}$

We have two options for inference:

1. Conduct the **hypothesis test**

 $H_0:eta_1=0 \ {
m vs.}\ H_A:eta_1
eq 0$



Confidence interval for population slope β_1

Recall the general CI formula:

 $\widehat{\beta}_1 \pm \underbrace{t_{\alpha,n-2}}_{SE_{\widehat{\beta}_1}} SE_{\widehat{\beta}_1}$

To construct the confidence interval, we need to:

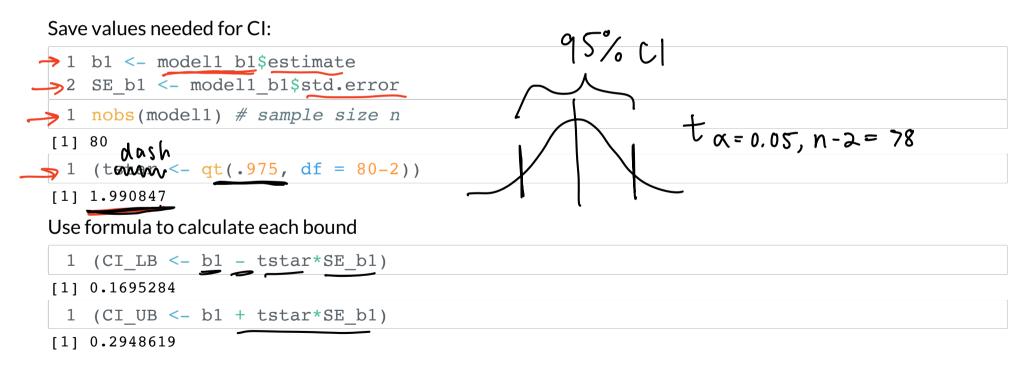
- Set our α -level
- Find $\widehat{\beta}_1$
- Calculate the t^*_{n-2}
- Calculate $SE_{\widehat{eta}_1}$

Calculate CI for population slope β_1 (1/2)

$$\widehat{eta}_1 \pm t^{{}^{{}_{eta}}} \cdot SE_{eta_1}$$

where t^{ℓ} is the *t*-distribution critical value with df = n - 2.

• **Option 1:** Calculate using each value



Calculate CI for population slope β_1 (2/2)

 $\widehat{eta}_1\pm t^*\cdot SE_{eta_1}$ where t^* is the t-distribution critical value with df=n-2.

• **Option 2:** Use the regression table

```
1 tidy(model1, conf.int = T) %>% gt() %>%
2 tab_options(table.font.size = 40) %>% fmt_number(decimals = 3)
```

term	estimate s	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.928	2.660	19.143	0.000	45.631	56.224
female_literacy_rate_2011	0.232	0.031	7.377	0.000	0.170	0.295

 $t \sim t \cdot dist$ test statistic (t-value)in dist. t-value critical value -> corresponds to desired x - level

Reporting the coefficient estimate of the population slope

- When we report our results to someone else, we don't usually show them our full hypothesis test
 - In an informal setting, someone may want to see it
- Typically, we report the estimate with the confidence interval
 - From the confidence interval, your audience can also deduce the results of a hypothesis test
- Once we found our CI, we often just write the interpretation of the coefficient estimate:

General statement for population slope inference

For every increase of 1 unit in the X-variable, there is an expected average increase of $\hat{\beta}_1$ units in the Y-variable (95%: LB, UB).

• In our example: For every 1% increase in female literacy rate, the average life expectancy is expected to increase, on average, 0.232 years (95% CI: 0.170, 0.295).

95% CI for population param slope

Poll Everywhere Question 4

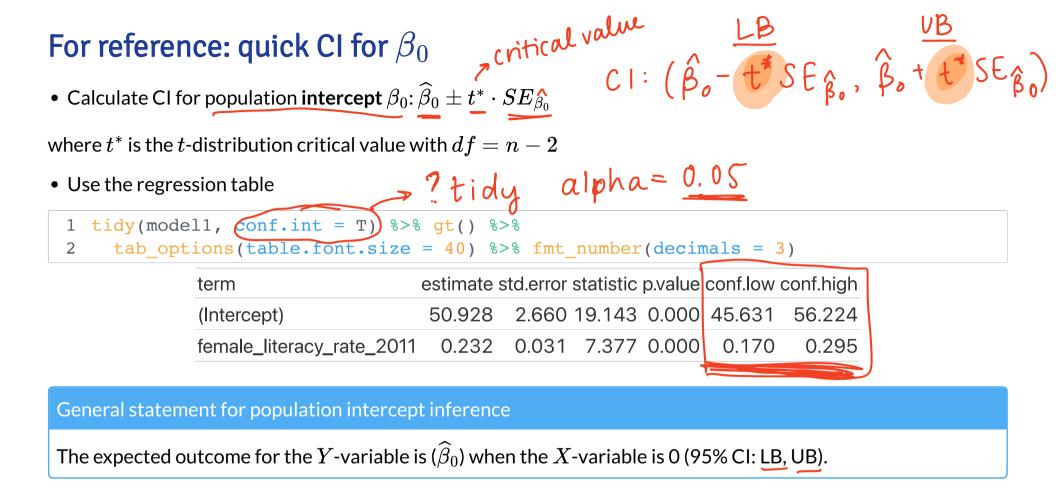
Based off the following regression table, write a statement for the intercept's interpretation. Make sure to include the confidence interval.

Poll_Ev_Q2.png

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.928	2.660	19.143	0.000	45.631	56.224
female_literacy_rate_2011	0.232	0.031	7.377	0.000	0.170	0.295

Nobody has responded yet.

Hang tight! Responses are coming in.



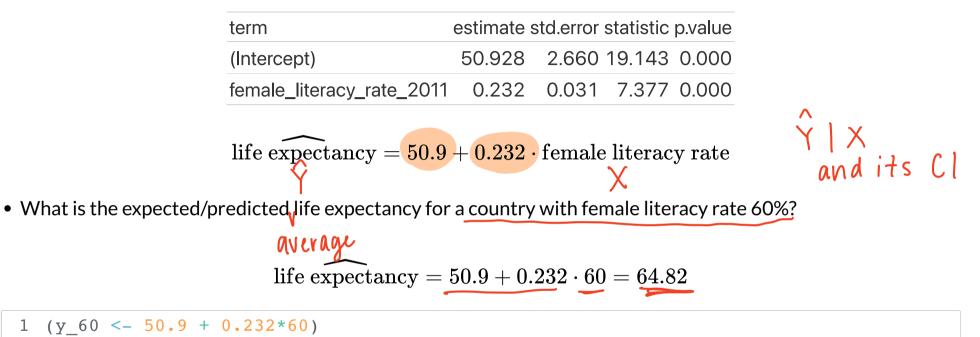
• For example: The expected/average life expectancy is 50.9 years when the female literacy rate is 0 (95% CI: 45.63, 56.22).

Learning Objectives

- 1. Estimate the variance of the residuals
- 2. Using a hypothesis test, determine if there is enough evidence that population slope β_1 is not 0 (applies to β_0 as well)
- 3. Calculate and report the estimate and confidence interval for the population slope β_1 (applies to β_0 as well)

4. Calculate and report the estimate and confidence interval for the expected/mean response given X

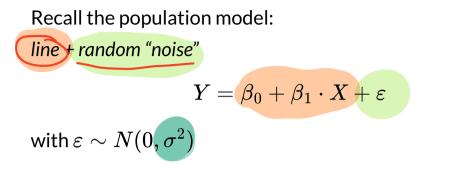
Finding a mean response given a value of our independent variable



[1] <u>64.82</u>

- How do we interpret the expected value?
 - We sometimes call this "predicted" value, since we can technically use a literacy rate that is not in our sample
- How variable is it?

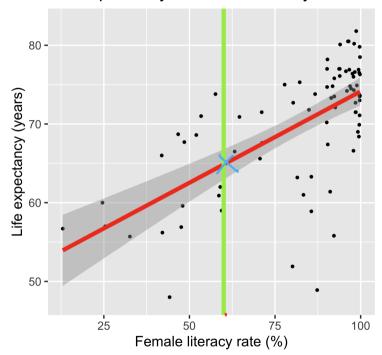
Mean response/prediction with regression line



• When we take the expected value, at a given value X^* , the average expected response at X^* is:

$$\widehat{E}[Y|X^*] = \widehat{eta}_0 + \widehat{eta}_1 X^*$$

Life expectancy vs. female literacy rate

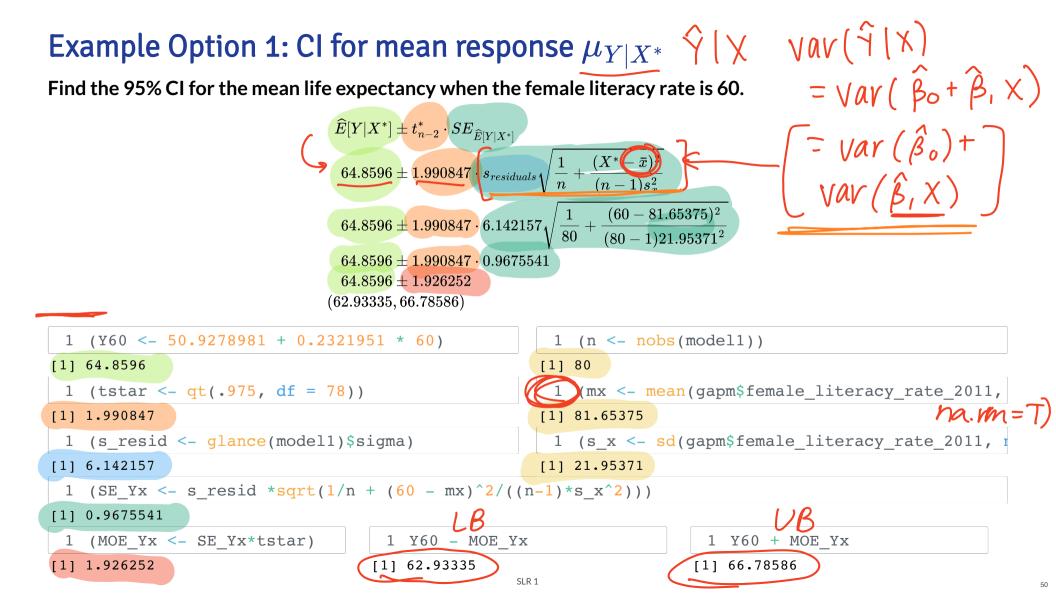


- These are the points on the regression line
- The mean responses have variability, and we can calculate a CI for it, for every value of X^st

 $\begin{aligned} & \mathsf{CI} \text{ for population mean response } (E[Y|X^*] \text{ or } \mu_{Y|X^*}) \\ & \widehat{\mathbb{E}}[Y|X^*] \pm t_{n-2}^* \cdot SE_{\widehat{\mathbb{E}}[Y|X^*]} \\ & \widehat{\mathbb{E}}[Y|X^*] = s_{\mathrm{residuals}} \sqrt{\frac{1}{n} + \frac{(X^* - \overline{X})^2}{(n-1)s_X^2}} \end{aligned}$

- $\widehat{E}[Y|X^*]$ is the predicted value at the specified point X^* of the explanatory variable
- $s^2_{
 m residuals}$ is the sd of the residuals
- *n* is the sample size, or the number of (complete) pairs of points
- X is the sample mean of the explanatory variable x
- s_X is the sample sd of the explanatory variable X

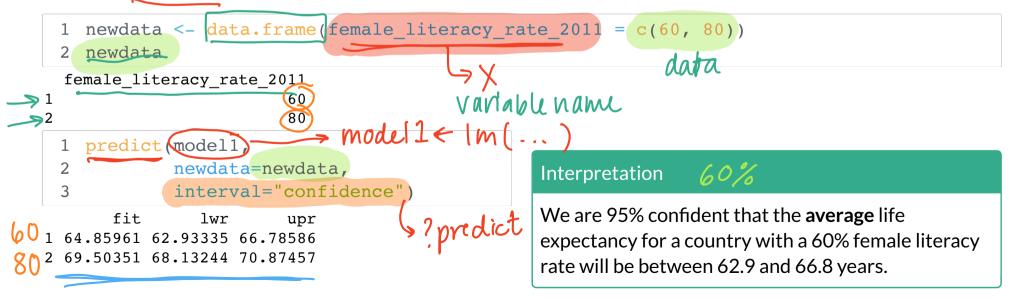
- Recall that t^*_{n-2} is calculated using qt () and depends on the confidence level (1 - lpha)



Example Option 2: CI for mean response $\mu_{Y|X^*}$

Find the 95% CI's for the mean life expectancy when the female literacy rate is 60 and 80.

- Use the base R predict() function
- Requires specification of a newdata "value"
 - The newdata value is X*
 - This has to be in the format of a data frame though
 - with column name identical to the predictor variable in the model

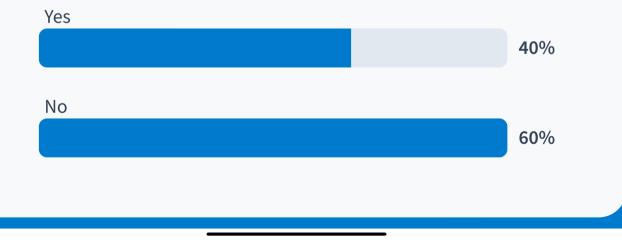


Poll Everywhere Question 5

P

Activity is now locked. Responses are not accepted at this time.

Given the CI is correct, is the following statement correct: We are 95% confident that the average life expectancy for a country with a 110% female literacy rate will be between 74.2 and 78.7 years.

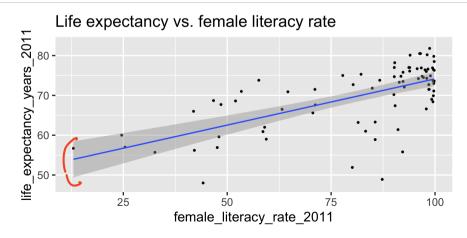


greater than 100%. Not possible

Confidence bands for mean response $\mu_{Y|X^*}$

- Often we plot the CI for many values of X, creating confidence bands
- The confidence bands are what ggplot creates when we set se = TRUE within geom_smooth
- Think about it: for what values of X are the confidence bands (intervals) narrowest?

```
1 ggplot(gapm,
2     aes(x=female_literacy_rate_2011,
3         y=life_expectancy_years_2011)) +
4 geom_point()+
5 geom_smooth(method = lm, se=TRUE)+
6 ggtitle("Life expectancy vs. female literacy rate")
```



Width of confidence bands for mean response $\mu_{Y|X^*}$

• For what values of X^* are the confidence bands (intervals) narrowest? widest?

