SLR: Model Evaluation and Diagnostics

Nicky Wakim 2023-01-29

Learning Objectives

- 1. Use visualizations and cut off points to flag potentially influential points using residuals, leverage, and Cook's distance
- 2. Handle influential points and assumption violations by checking data errors, reassessing the model, and making data transformations.
- 3. Implement a model with data transformations and determine if it improves the model fit.

Let's remind ourselves of the model that we have been working with

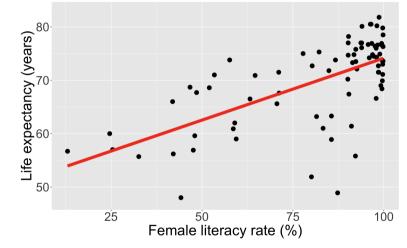
- We have been looking at the association between life expectancy and female literacy rate
- We used OLS to find the coefficient estimates of our best-fit line

pop model
$$Y = \beta_0 + \beta_1 X + \epsilon$$

	term	estimate std.error statistic p.value				
it	(Intercept)	50.93	2.66	19.14	0.00	
	female_literacy_rate_2011	0.23	0.03	7.38	0.00	

 $\widehat{Y}=\widehat{eta}_0+\widehat{eta}_1\cdot X$ life expectancy = $50.9+0.232\cdot$ female literacy rate fitted modul line

Relationship between life expectancy and the female literacy rate in 2011

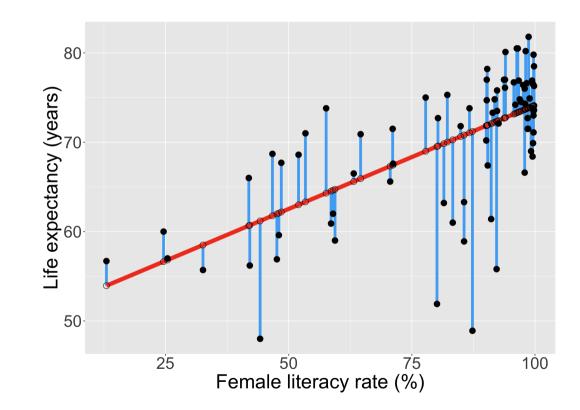


4

Our residuals will help us a lot in our diagnostics!

- The **residuals** $\hat{\epsilon}_i$ are the vertical distances between
 - the observed data (X_i,Y_i)
 - the fitted values (regression line) $\widehat{Y}_i = \widehat{eta}_0 + \widehat{eta}_1 X_i$

$$\widehat{\epsilon}_i = Y_i - \widehat{Y}_i, ext{ for } i = 1, 2, \dots, n$$



augment(): getting extra information on the fitted model

- Run model1 through augment() (model1 is input)
 - So we assigned model1 as the output of the lm() function (model1 is output)
- Will give us values about each observation in the context of the fitted regression model
 - cook's distance (.cooksd), fitted value (.fitted, \hat{Y}_i), leverage (.hat), residual (.resid), standardized residuals (.std.resid)

```
1 aug1 <- augment(model1)</pre>
```

```
2 glimpse(aug1)
```

```
Rows: 80 observation
```

Columns: 9

(\$.rownames	<chr></chr>	"1", "2", "5", "6", "7", "8", "14", "22", "
٢	\$	life_expectancy_years_2011	<dbl></dbl>	56.7, 76.7, 60.9, 76.9, 76.0, 73.8, 71.0, 7
	\$	<pre>female_literacy_rate_2011</pre>	<dbl></dbl>	13.0, 95.7, 58.6, 99.4, 97.9, 99.5, 53.4, 9
	\$.fitted	<dbl></dbl>	53.94643, 73.14897, 64.53453, 74.00809, 73
	\$.resid	<dbl></dbl>	2.7535654, 3.5510294, -3.6345319, 2.8919074
4	\$.hat	<dbl></dbl>	0.13628996, 0.01768176, 0.02645854, 0.02077
	\$.sigma	<dbl></dbl>	6.172684, 6.168414, 6.167643, 6.172935, 6.1
	\$.cooksd	<dbl></dbl>	1.835891e-02, 3.062372e-03, 4.887448e-03, 2
	~			

RDocumentation on the augment () function.

6

Revisiting our LINE assumptions

[L] Linearity of relationship between variables

Check if there is a linear relationship between the mean response (Y) and the explanatory variable (X)

[I] Independence of the Y values

Check that the observations are independent

[N] Normality of the Y's given X (residuals)

Check that the responses (at each level X) are normally distributed

• Usually measured through the residuals

[E] Equality of variance of the residuals (homoscedasticity)

Check that the variance (or standard deviation) of the responses is equal for all levels of X

7

• Usually measured through the residuals

SLR 5

aloni Ceach X level

Learning Objectives

- 1. Use visualizations and cut off points to flag potentially influential points using residuals leverage, and Cook's distance
- 2. Handle influential points and assumption violations by checking data errors, reassessing the model, and making data transformations.
- 3. Implement a model with data transformations and determine if it improves the model fit.

9

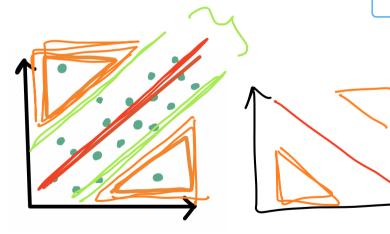
Influential points

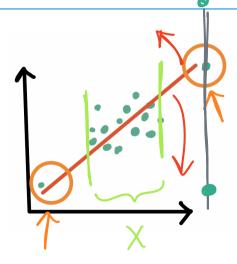
Outliers

• An observation (X_i, Y_i) whose response Y_i does not follow the general trend of the rest of the data

High leverage observations

- An observation (X_i, Y_i) whose predictor X_i has an extreme value
- X_i can be an extremely high or low value compared to the rest of the observations





Outliers

- An observation (X_i, Y_i) whose response Y_i does not follow the general trend of the rest of the data
- How do we determine if a point is an outlier?
 - Scatterplot of Y vs. X
 - Followed by evaluation of its residual (and standardized residual)

• Use the internally standardized residual (aka studentized residual) to determine if an observation is an outlier

std residual ~ N(0,
$$\underline{1}$$
)
residual ~ N(0, $\hat{\sigma}^2$)

Poll Everywhere Question 1

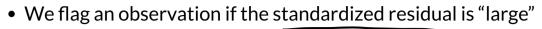
Identifying outliers

qqplot(data = (auq1))

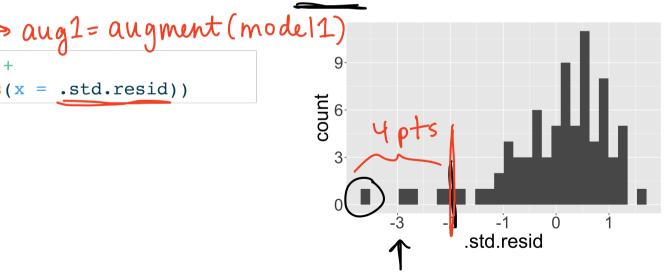
geom_histogram(aes(x = .std.resid))

1 2

pts/obs



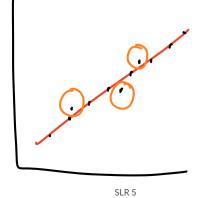
- Different sources will define "large" differently
- PennState site uses $|r_i| > 3$ if $r_i > 3$ if $-r_i < -3$
- autoplot() shows the 3 observations with the highest standardized residuals
- Other sources use $|r_i|>2$, which is a little more conservative



Countries that are outliers ($|r_i| > 2$)

• We can identify the countries that are outliers

1 augl ⁹	8>8 [r;]	>2		
2 filt	ter(abs(.std.	resid) > 2)		
# A tibble	: 4 × 10			
.rowname	s country	life_expectancy_year1 female_	literacy_rate… ² .st	d.resid
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 33	Central Af	48	44.2	-2.20
2 152	South Afri…	55.8	92.2	-2.71
3 161	Swaziland	48.9	87.3	-3.65
4 187_	Zimbabwe	51.9	80.1	-2.89
# i abbrev	iated names: 1	life_expectancy_years_2011, ² f	emale_literacy_rate	_2011
# i 5 more	variables: .f	itted <dbl>, .resid <dbl>, .ha</dbl></dbl>	t <dbl>, .sigma <db< td=""><td>, <u> </u></td></db<></dbl>	, <u> </u>
# .cooks	d <dbl></dbl>			



High leverage observations

• An observation (X_i, Y_i) whose response X_i is considered "extreme" compared to the other values of X

- How do we determine if a point has high leverage?
- \hookrightarrow Scatterplot of Y vs. X
 - Calculating the leverage of each observation

Leverage			hat matrix	* what does diff
 Values of levera 	age are: $0 \leq h_i \leq 1$ h	igher means	more leverage	in magnitude
	ervation if the leverage is "	0	V	-
 Different sou 	urces will define "high" diffe	erently		
Some textbo	ooks use $h_i > 4/n$ where n_i	u = sample size 🚽 📙	(LE)	J
	e suggest $\overline{h_i} > 6/n$ $ ightarrow$		$\gamma = \beta_0 +$	β, X + ε
PennState si	te uses $h_i > 3p/n$ where f_i	$p \rightarrow$ number of regressio	on coefficients $h_i \simeq \frac{3(2)}{2}$	$\underline{x} = \underline{3(a)}$
			/ h	80
	arrange(desc(.hat))	highest hi to		
# A tibble: 80		0	K	hat
.rownames co <chr> <c< td=""><td>hr></td><td><pre>tancy_year1 female_]</pre></td><td>literacy_rate² .hat <dbl> <dbl></dbl></dbl></td><td></td></c<></chr>	hr>	<pre>tancy_year1 female_]</pre>	literacy_rate ² .hat <dbl> <dbl></dbl></dbl>	
	ghanistan	56.7	13 0.136	
2 104 Ma	-	60	24.6 0.0980	
3 34 Ch	ad	57	25.4 0.0956	
4 146 Si	erra Leone	55.7	32.6 0.0757	
5 62 Ga	mbia	66	41.9 0.0540	
6 70 Gu	linea-Bissau	56.2	42.1 0.0536	
7 33 Ce	entral Afric	48	44.2 0.0493	

Countries with high leverage ($h_i > 4/n$)

• We can look at the countries that have high leverage

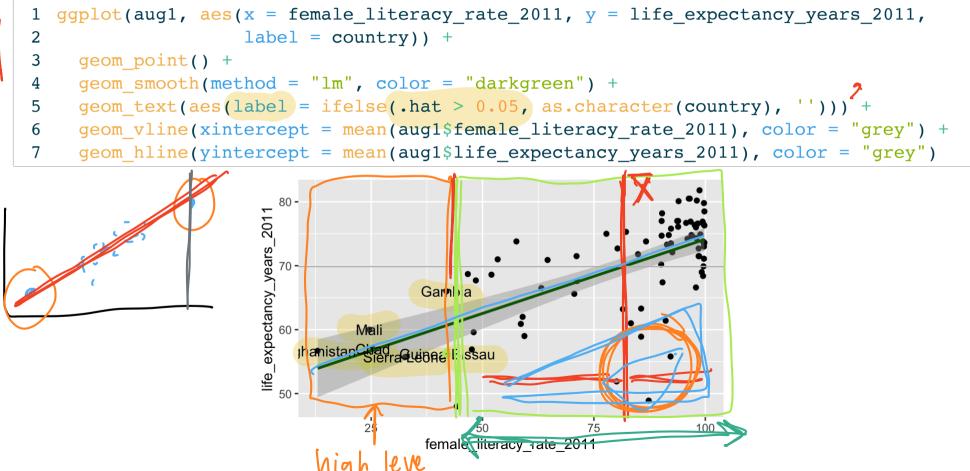
	<pre>1 aug1 %>% h; \ /n = 4/g0 = 0.0\$ 2. filter(.hat > 4/80) %>% 3 arrange(desc(.hat))</pre>							
#	A tibble:	6 × 10						
	.rownames	country	<pre>life_expectancy_years1 female_literacy_rate2</pre>	.hat				
	<chr></chr>	<chr></chr>	<dbl> <dbl></dbl></dbl>	<dbl></dbl>				
(1	1	Afghanistan	56.7 13	0.136				
2	104	Mali	60 24.6	0.0980				
🖌 З	34	Chad	57 25.4	0.0956				
4	146	Sierra Leone	55.7 32.6	0.0757				
5	62	Gambia	66 41.9	0.0540				
6	70	Guinea-Bissau	56.2 42.1	0.0536				
#	i abbrevia	ated names: 11	ife_expectancy_years_2011, ² female_literacy_rate	_2011				

SLR 5

Poll Everywhere Question 2

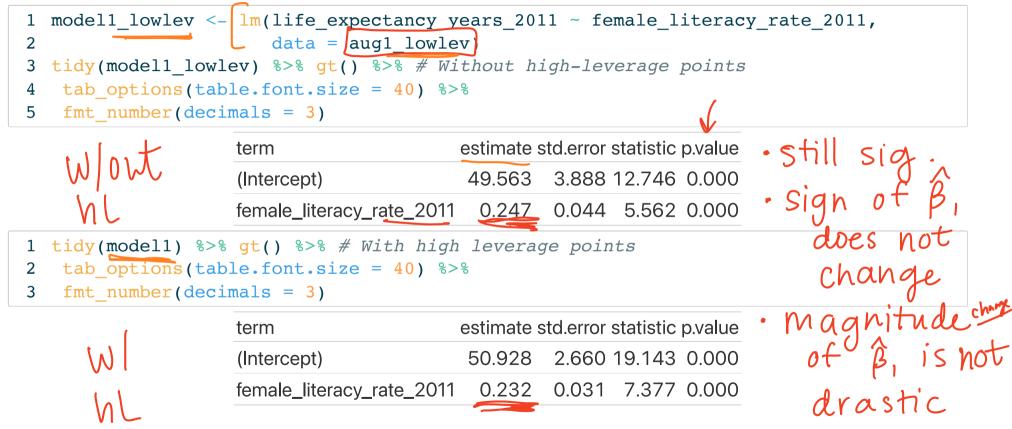
Countries with high leverage ($h_i > 4/n$)

Label only countries with large leverage:



What does the model look like without the high leverage points?

Sensitivity analysis removing countries with high leverage



Cook's distance

• Measures the overall influence of an observation

- Attempts to measure how much influence a single observation has over the fitted model
 - Measures how all fitted values change when the *ith* observation is removed from the model
 - Combines leverage and outlier information

```
coeff est.
resid.variance est.
```

Identifying points with high Cook's distance

The Cook's distance for the i^{th} observation is

$$d_i = rac{h_i}{2(1-h_i)} \cdot rac{r_i^2}{r_i^2}$$

where h_i is the leverage and r_i is the studentized residual

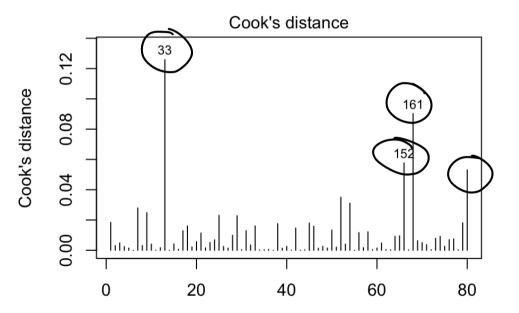
• Another rule for Cook's distance that is not strict:

- Investigate observations that have $d_i > 1$
- Cook's distance values are already in the augment tibble: .cooksd

```
1 aug1 = aug1 %>% relocate(.cooksd, .after = female literacy rate 2011)
 2 aug1 %>% arrange(desc(.cooksd))
# A tibble: 80 \times 10
                             life expectancy year...<sup>1</sup> female literacy_rate...<sup>2</sup> .cooksd
   .rownames country
                                                                                <dbl>
   <chr>
              <chr>
                                               <dbl>
                                                                        <dbl>
                                                48
                                                                         44.2
                                                                               0.126
  33
             Central Afri...
 2 161
              Swaziland
                                                48.9
                                                                         87.3
                                                                               0.0903
 3 152
              South Africa
                                                55.8
                                                                         92.2 0.0577
 4 187
              Zimbabwe
                                                51.9
                                                                         80.1
                                                                               0.0531
 5 114
             Morocco
                                                73.8
                                                                         57.6 0.0350
                                                                         46.7
 6 118
             Nepal
                                                68.7
                                                                               0.0311
              Bangladesh
 7 14
                                                71
                                                                         53.4 0.0280
```

Plotting Cook's Distance

- 1 # plot(model) shows figures similar to autoplot()
- 2~# adds on Cook's distance though
- 3 plot(model1, which = 4)

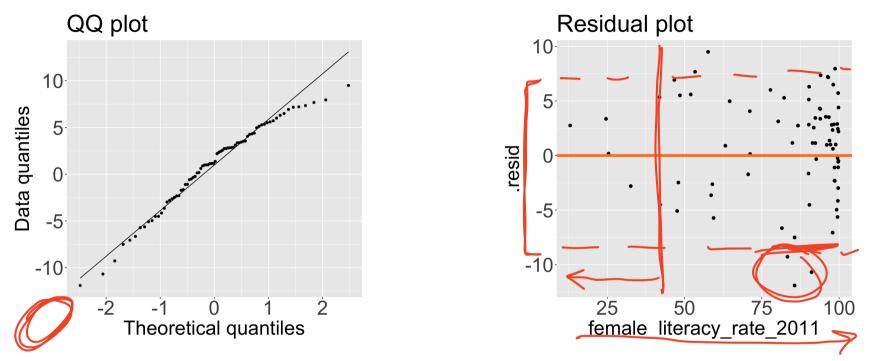


Obs. number Im(life_expectancy_years_2011 ~ female_literacy_rate_2011)

Model without those 4 points: QQ Plot, Residual plot

1 2 3								
4 5	4 tab_options(table.font.size = 40) %>%							
		term	estimate s	td.error	statistic	p.value		
		(Intercept)	52.388	2.078	25.208	0.000		
		female_literacy_rate_201	0.226	0.024	9.208	0.000		
<pre>1 tidy(model1) %>% gt() %>% # With hig 2 tab_options(table.font.size = 40) % 3 fmt_number(decimals = 3)</pre>			-	e poin	ts			
		term	estimate s	td.error	statistic	p.value		
		(Intercept)	50.928	2.660	19.143	0.000		
		female_literacy_rate_2011	0.232	0.031	7.377	0.000		

Model without those 4 points: QQ Plot, Residual plot



I am okay with this!

- And don't forget: we may want more variables in our model!
- You do not need to produce plots with the influential points taken out

Summary of how we identify influential points

- Use scatterplot of Y vs. X to see if any points fall outside of range we expect
- Use standardized residuals, leverage, and Cook's distance to further identify those points
- Look at the models run with and without the identified points to check for drastic changes
 - Look at QQ plot and residuals to see if assumptions hold without those points
 - Look at coefficient estimates to see if they change in sign and large magnitude

• Next: how to handle? It's a little wishy washy

Learning Objectives

1. Use visualizations and cut off points to flag potentially influential points using residuals, leverage, and Cook's distance

2. Handle influential points and assumption violations by checking data errors, reassessing the model, and making data transformations.

3. Implement a model with data transformations and determine if it improves the model fit.

How do we deal with influential points?

- It's always weird to be using numbers to help you diagnose an issue, but the issue kinda gets unresolved
- If an observation is influential, we can check data errors:
 - Was there a data entry or collection problem?
 - If you have reason to believe that the observation does not hold within the population (or gives you cause to redefine your population)
- If an observation is influential, we can check our model:
 - Did you leave out any important predictors?
 - Should you consider adding some interaction terms?
- Is there any nonlinearity that needs to be modeled? -> transformation
- Basically, deleting an observation should be justified outside of the numbers!
 - If it's an honest data point, then it's giving us important information!
- A really well thought out explanation from StackExchange

When we have detected problems in our model...

- We have talked about influential points
- We have talked about identifying issues with our LINE assumptions

What are our options once we have identified issues in our linear regression model?

- See if we need to add predictors to our model
 - Nicky's thought for our life expectancy example
- Try a transformation if there is an issue with linearity or normality
- Try a transformation if there is unequal variance
- ullet Try a weighted least squares approach if unequal variance (might be lesson at end of course) 🥝
- Try a robust estimation procedure if we have a lot of outlier issues (outside scope of class) $\,$ $\,$

Learning Objectives

- 1. Use visualizations and cut off points to flag potentially influential points using residuals, leverage, and Cook's distance
- 2. Handle influential points and assumption violations by checking data errors, reassessing the model, and making data transformations.

3. Implement a model with data transformations and determine if it improves the model fit.

Transformations

- When we have issues with our LINE (mostly linearity, normality, or equality of variance) assumptions
 - We can use transformations to improve the fit of the model
- Transformations can...
 - Make the relationship more linear
 - Make the residuals more normal
 - "Stabilize" the variance so that it is more constant
 - It can also bring in or reduce outliers -> potential consequence
- We can transform the dependent (Y) variable of the independent (X) variable
 - Usually we want to try transforming the X first
- Requires trial and error!!
- Major drawback: interpreting the model becomes harder!

Common transformations

• Tukey's transformation (power) ladder

Power p

-3

Use R's gladder() command from the describedata package resid

-1/2

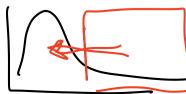
0

 $\log(x)$

How to use the power ladder for the general distribution shape

-2

- If data are skewed left, we need to compress smaller values towards the rest of the data
 - Go "up" ladder to transformations with power > 1
- If data are skewed right, we need to compress larger values towards the rest of the data
 - Go "down" ladder to transformations with power
 1



• How to use the power ladder for heteroscedasticity

x

of X alone or

 γ / χ

3

 x^3

If higher X values have more spread

1/2

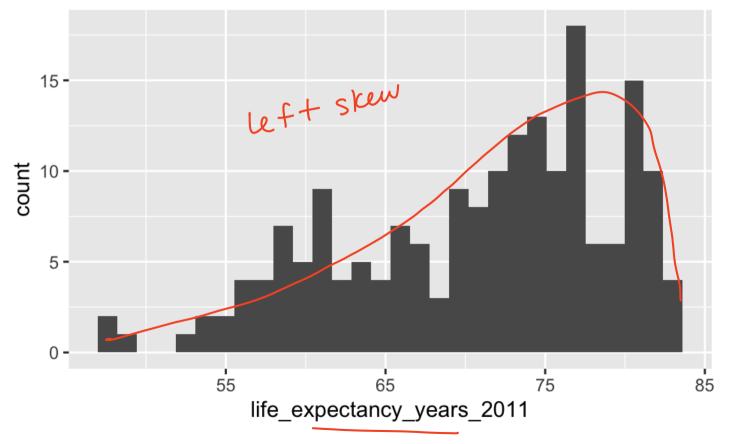
 \sqrt{x}

- Compress larger values towards the rest of the data
- Go "down" ladder to transformations with power
 1
- If lower X values have more spread
 - Compress smaller values towards the rest of the data
 - Go "up" ladder to transformations with power > 1

Poll Everywhere Question 3

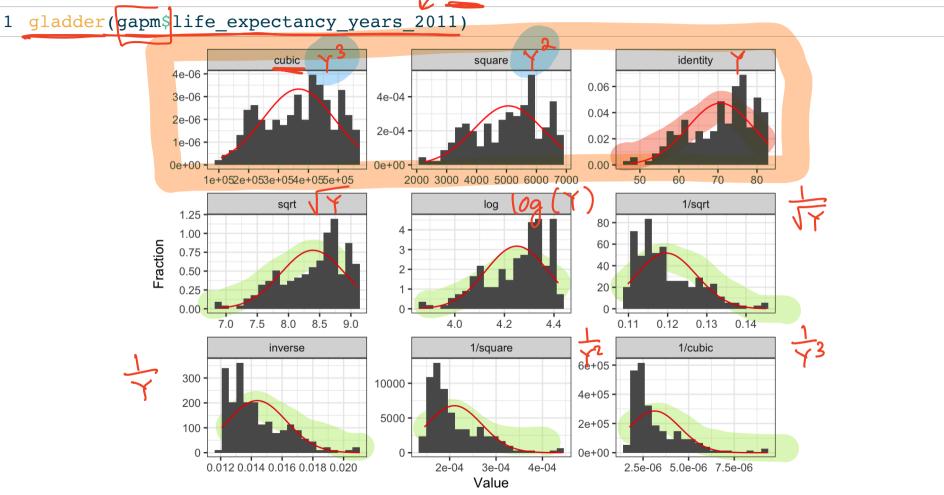
Transform dependent variable? Y

- 1 ggplot(gapm, aes(x = life_expectancy_years_2011)) +
- 2 geom_histogram()



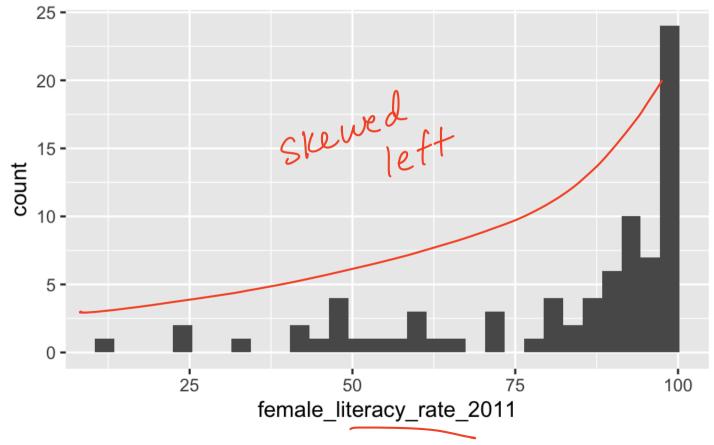
gladder() of life expectancy

want it less skewed



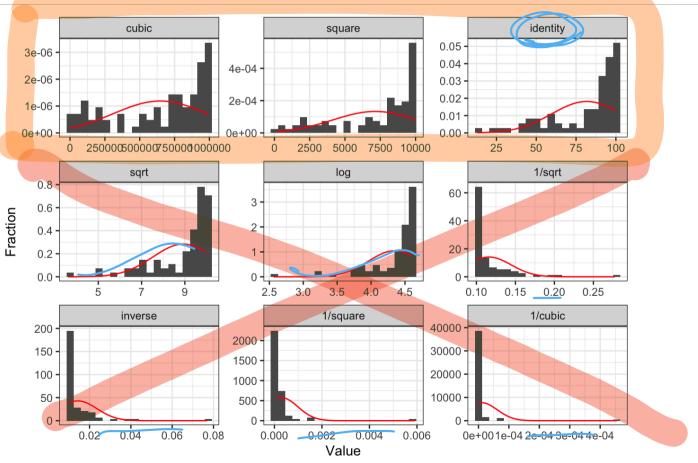
Transform independent variable? X

- 1 ggplot(gapm, aes(x = female_literacy_rate_2011)) +
- 2 geom_histogram()



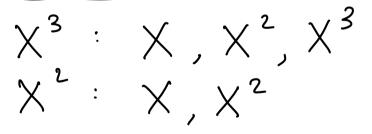
gladder() of female literacy rate

1 gladder(gapm\$female_literacy_rate_2011)



Tips

- - We can use gladder() to get a sense of what our transformations will do to the data, but we need to check with our residuals again!!
- Transformations usually work better if all values are positive (or negative)
- If observation has a 0, then we cannot perform certain transformations
- Log function only defined for positive values
 - We might take the log(X + 1) if X includes a 0 value
- When we make cubic or square transformations, we MUST include the original X.
 - We do not do this for Y though



Add quadratic and cubic transformations to dataset

• Helpful to make a new variable with the transformation in your dataset

```
1
   qapm <- qapm %>%
      mutate(LE 2 = life expectancy years 2011^2,
 2
             LE 3 = life expectancy years 2011^3,
 3
             FLR 2 = female literacy rate 2011^2,
 4
             FLR 3 = female literacy_rate_2011^3)
 5
 6
   glimpse(gapm)
 7
Rows: 188
Columns: 8
                           <chr> "Afghanistan" "Albania" "Algeria" "Andor
$ country
```

Ŷ	councry	(OUL)	mighanibean / mibanita / migeria / maor
\$	<pre>life_expectancy_years_2011</pre>	<dbl></dbl>	56.7, 76.7, 76.7, 82.6, 60.9, 76.9, 76.0, 7
\$	<pre>female_literacy_rate_2011</pre>	<dbl></dbl>	13.0, 95.7, NA, NA, 58.6, 99.4, 97.9, 99.5,
\$.rownames	<chr></chr>	"1", "2", "3", "4", "5", "6", "7", "8", "9"
\$	LE_2	<dbl></dbl>	3214.89, 5882.89, 5882.89, 6822.76, 3708.81
\$	LE_3	<dbl></dbl>	182284.3, 451217.7, 451217.7, 563560.0, 225
\$	FLR_2	<dbl></dbl>	169.00, 9158.49, NA, NA, 3433.96, 9880.36,
\$	FLR_3	<dbl></dbl>	2197.0, 876467.5, NA, NA, 201230.1, 982107

41

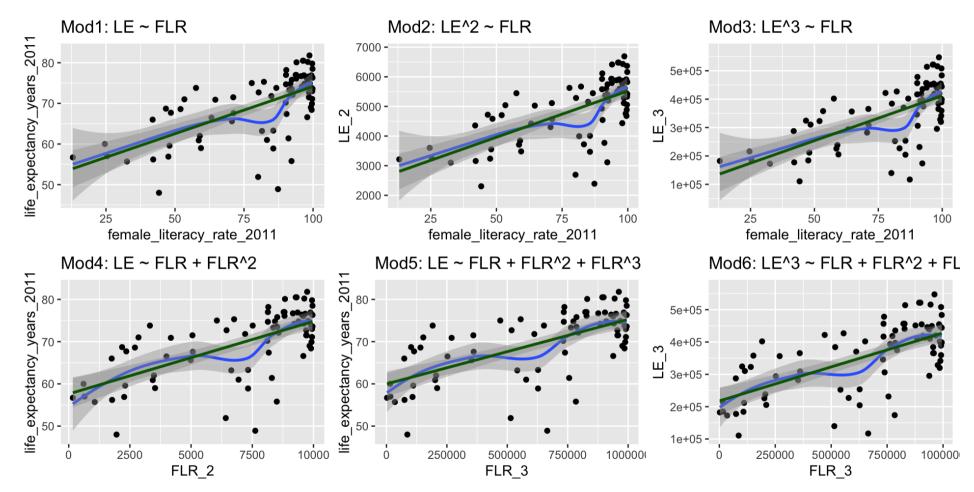
We are going to compare a few different models with transformations

We are going to call life expectancy LE and female literacy rate FLR

- Model 1: $LE=eta_0+eta_1FLR+\epsilon$
- $\mathbf{\hat{}}$ Model 2: $LE^2=eta_0+eta_1FLR+\epsilon$
- Model 3: $LE^3=eta_0+eta_1FLR+\epsilon$
- Model 4: $LE=eta_0+eta_1FLR+eta_2FLR^2+\epsilon$
- Model 5: $LE=eta_0+eta_1FLR+eta_2FLR^2+eta_3FLR^3+\epsilon$
- Model 6: $LE^3=eta_0+eta_1FLR+eta_2FLR^2+eta_3FLR^3+\epsilon$

Poll Everywhere Question 4

Compare Scatterplots: does linearity improve?



Run models with transformations: examples

Model 2: $LE^2 = \beta_0 + \beta_1 FLR + \epsilon$

2

```
1 model2 <- lm(LE_2 ~ female_literacy_rate_2011,</pre>
```

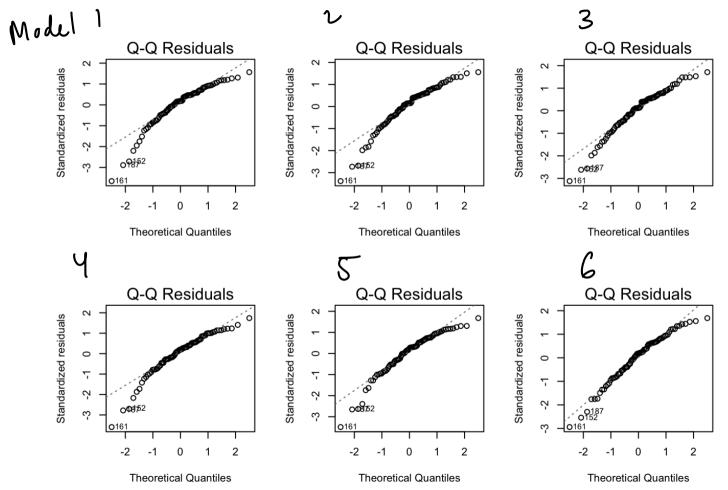
data = gapm)

termestimatestd.errorstatisticp.value(Intercept)2,401 272 352.0706.8200.000female_literacy_rate_201131.1744.1667.4840.000

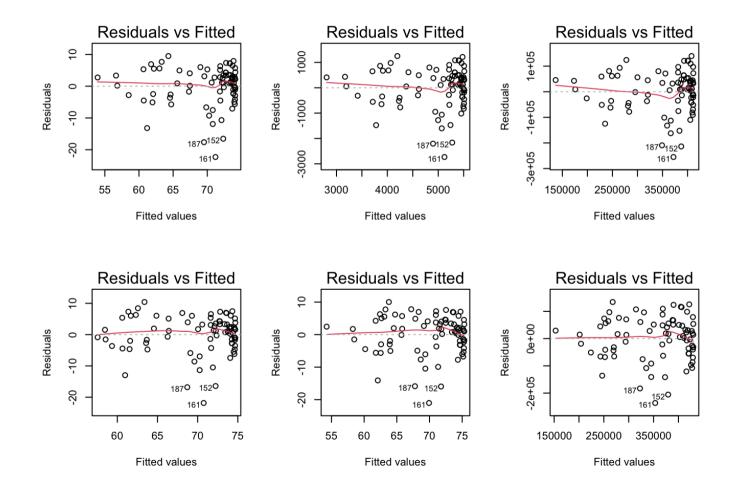
Model 6: $\underline{LE^3} = \beta_0 + \beta_1 FLR + \beta_2 FLR^2 + \beta_3 FLR^3 + \epsilon$ O. 23

	term	estimate	std.error	statistic p.value
-	(Intercept)	67,691.796	149,056.945	0.454 0.651
ſ	female_literacy_rate_2011	8,092.133	8,473.154	0.955 0.343
\prec	FLR_2	-128.596	147.876	-0.870 0.387
	FLR_3	0.840	0.794	1.059 0.293

Normal Q-Q plots comparison



Residual plots comparison



Summary of transformations

- If the model without the transformation is blatantly violating a LINE assumption
 - Then a transformation is a good idea
- If the model without a transformation is not following the LINE assumptions very well, but is mostly okay
 - Then try to avoid a transformation
 - Think about what predictors might need to be added
 - Especially if you keep seeing the same points as influential
- If interpretability is important in your final work, then transformations are not a great solution

Reference: all run models

Model 2: $LE^2=eta_0+eta_1FLR+\epsilon$

term	estimate	std.error	statistic	p.value
(Intercept)	2401.27207	352.069818	6.820443	1.726640e-09
female_literacy_rate_2011	31.17351	4.165624	7.483514	9.352191e-11

Model 3: $LE^3 \sim FLR$

1 2 3	model3	<- lm(LE_3 ~ data =		litera	.cy_rate	e_2011,
4	tidy(mo	del3) %>% gt()			
		term	estimate	std.error	statistic	p.value

(Intercept)	95453.189	35631.6898	2.678885	9.005716e-03
female literacy rate 2011	3166.481	421,5875	7.510853	8.285324e-11

Model 4: $LE \sim FLR + FLR^2$

term	estimate	std.error	statistic	p.value
(Intercept)	57.030875456	6.282845592	9.07723652	8.512585e-14
female_literacy_rate_2011	0.019348795	0.201021963	0.09625215	9.235704e-01
FLR_2	0.001578649	0.001472592	1.07202008	2.870595e-01

Model 5: $LE \sim FLR + FLR^2 + FLR^3$

5 tidy(model5) %>% gt()

4

term	estimate	std.error	statistic	p.value
(Intercept)	4.732796e+01	1.117939e+01	4.2335001	6.373341e-05
female_literacy_rate_2011	6.517986e-01	6.354934e-01	1.0256576	3.083065e-01
FLR_2	-9.952763e-03	1.109080e-02	-0.8973895	3.723451e-01
FLR_3	6.245016e-05	5.953283e-05	1.0490038	2.975008e-01

Model 6: $LE^3 \sim FLR + FLR^2 + FLR^3$

term	estimate	std.error	statistic	p.value
(Intercept)	67691.7963283	1.490569e+05	0.4541338	0.6510268
female_literacy_rate_2011	8092.1325988	8.473154e+03	0.9550320	0.3425895
FLR_2	-128.5960879	1.478757e+02	-0.8696230	0.3872447
FLR_3	0.8404736	7.937625e-01	1.0588477	0.2930229