Introduction to Multiple Linear Regression (MLR)

Nicky Wakim 2024-02-05

Learning Objectives

1. Understand equations and visualizations that helps us build multiple linear regression model.

2. Fit MLR model (in R) and understand the difference between fitted regression plane and regression lines.

3. Identify the population multiple linear regression model and define statistics language for key notation.

4. Based off of previous SLR work, understand how the population MLR is estimated.

5. Interpret MLR (population) coefficient estimates with additional variable in model

Reminder of what we learned in the context of SLR

- SLR helped us establish the foundation for a lot of regression
 - But we do not usually use SLR in analysis

What did we learn in SLR??

Model Fitting

- Ordinary least squares (OLS)
- lm() function in R

Model Use

- Inference for variance of residuals
- Hypothesis testing for coefficients
- Interpreting population coefficient estimates
- Calculated the expected mean for specific *X* values
- Interpreted coefficient of determination

Model Evaluation/Diagnostics

- LINE Assumptions
- Influential points
- Data Transformations

Let's map that to our regression analysis process

• Hypothesis testing for coefficients

All models are wrong, but some are useful.

George E. P. Box

(m) quotefanci

Learning Objectives

1. Understand equations and visualizations that helps us build multiple linear regression model.

2. Fit MLR model (in R) and understand the difference between fitted regression plane and regression lines.
 3. Identify the population multiple linear regression model and define statistics language for key notation.
 4. Based off of previous SLR work, understand how the population MLR is estimated.

5. Interpret MLR (population) coefficient estimates with additional variable in model

Simple Linear Regression vs. Multiple Linear Regression

Simple Linear Regression

Multiple Linear Regression

We use **one predictor** to try to explain the variance of the outcome

$$Y = \beta_0 + \beta_1 X + \epsilon$$

We use **multiple predictors** to try to explain the variance of the outcome

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$

• Has k + 1 total coefficients (including intercept) for k predictors/covariates

9

• Sometimes referred to as *multivariable* linear regression, but *never multivariate*

• The models have similar "LINE" assumptions and follow the same general diagnostic procedure

Going back to our life expectancy example

- Let's say many other variables were measured for each country, including food supply
 - Food Supply (kilocalories per person per day, kc PPD): the average kilocalories consumed by a person each day.
- In SLR, we only had one predictor and one outcome in the model:
 - Life expectancy = the average number of years a newborn child would live if current mortality patterns were to stay the same.
 - Adult literacy rate is the percentage of people ages 15 and above who can, with understanding, read and write a short, simple statement on their everyday life.

• Do we think adult female literacy rate is going to explain a lot of the variance of life expectancy between countries?

Loading the (new-*ish*) data

- >>> LifeExpectancyYrs
 - FemaleLiteracyRate S
 - \$ population

<dbl> 56.7, 76.7, 60.9, 76.9, 76.0, 73.8,... <dbl> 13.0, 95.7, 58.6, 99.4, 97.9, 99.5,... <dbl> 2.97e+07, 2.93e+06, 2.42e+07, 9.57e...

Can we improve our model by adding food supply as a covariate?

Simple linear regression population model

$$\begin{split} \text{Life expectancy} &= \beta_0 + \beta_1 \text{Female literacy rate} + \epsilon \\ \text{LE} &= \underline{\beta_0} + \underline{\beta_1} \text{FLR} + \epsilon \end{split}$$

Multiple linear regression population model (with added Food Supply)

$$\begin{split} \text{Life expectancy} &= \beta_0 + \beta_1 \text{Female literacy rate} + \beta_2 \text{Food supply} + \epsilon \\ \text{LE} &= \beta_0 + \beta_1 \text{FLR} + \beta_2 \text{FS} + \epsilon \end{split}$$

Visualize relationship between life expectancy, female literacy rate, and food supply

Visualize relationship in 3-D

Poll Everywhere Question 1

• Activity is now locked. ि Responses are not accepted at this time. Do you think food supply (in addition to female literacy rate) will help explain the variance of life expectancy? Yes! 71% No! 0% We need to fit the model to find out! J 29%

Learning Objectives

1. Understand equations and visualizations that helps us build multiple linear regression model.

2. Fit MLR model (in R) and understand the difference between fitted regression plane and regression lines.

3. Identify the population multiple linear regression model and define statistics language for key notation.

- 4. Based off of previous SLR work, understand how the population MLR is estimated.
- 5. Interpret MLR (population) coefficient estimates with additional variable in model

How do we fit a multiple linear regression model in R?

New population model for example:

Fitted multiple regression model:

Life expectancy =
$$\hat{\beta}_0 + \hat{\beta}_1$$
Female literacy rate + $\hat{\beta}_2$ Food supply
Life expectancy = $33.595 + 0.157$ Female literacy rate + 0.008 Food supply

Don't forget summary() to extract information!

1 summary(mr1)

Residuals:

Min	1Q	Median	3Q	Max
-17.715	-2.328	1.052	3.022	9.083

Coefficients:

Visualize the fitted multiple regression model

• The fitted model equation

 $\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 \cdot X_1 + \widehat{eta}_2 \cdot X_2$

has three variables $(Y, X_1, \text{ and } X_2)$ and thus we need 3 dimensions to plot it

- Instead of a regression line, we get a regression plane
 - See code in <u>qmd</u>-file. I hid it from view in the html file.

Regression lines for varying values of food supply

 $\widehat{\text{Life expectancy}} = \widehat{\beta}_0 + \widehat{\beta}_1$ Female literacy rate $+ \widehat{\beta}_2$ Food supply $\widehat{\text{Life expectancy}} = 33.595 + 0.157$ Female literacy rate + 0.008 Food supply

- Note: when the food supply is held constant but the female literacy rate varies...
 - then the outcome values change along a line
- Different values of food supply give different lines
 - The intercepts change, but
 - the slopes stay the same (parallel lines)

How do we calculate the regression line for 3000 kc PPD food supply?

Poll Everwhere Question 2

Learning Objectives

1. Understand equations and visualizations that helps us build multiple linear regression model.

2. Fit MLR model (in R) and understand the difference between fitted regression plane and regression lines.

3. Identify the population multiple linear regression model and define statistics language for key notation.

4. Based off of previous SLR work, understand how the population MLR is estimated.

5. Interpret MLR (population) coefficient estimates with additional variable in model

Population multiple regression model

or on the individual (observation) level:

$$y_i=eta_0+eta_1x_{i1}+eta_2x_{i2}+\ldots+eta_kx_{ik}+\epsilon_i, ~~ ext{for}~i=1,2,\ldots,n$$

Observable sample data

- Y is our dependent variable
 - Aka outcome or response variable
- X_1, X_2, \ldots, X_k are our k independent variables
 - Aka predictors or covariates

Unobservable population parameters

- $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ are **unknown** population **parameters**
 - From our sample, we find the population parameter estimates: $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$
- ϵ is the random error
 - And is still normally distributed
 - $\epsilon \sim N(0, \sigma^2)$ where σ^2 is the population parameter of the variance

Learning Objectives

1. Understand equations and visualizations that helps us build multiple linear regression model.

2. Fit MLR model (in R) and understand the difference between fitted regression plane and regression lines.

3. Identify the population multiple linear regression model and define statistics language for key notation.

4. Based off of previous SLR work, understand how the population MLR is estimated.

5. Interpret MLR (population) coefficient estimates with additional variable in model

How do we estimate the model parameters?

- We need to estimate the population model coefficients $\widehat{eta}_0, \widehat{eta}_1, \widehat{eta}_2, \dots, \widehat{eta}_k$
- This can be done using the ordinary least-squares method
 - Find the $\widehat{\beta}$ values that **minimize** the sum of squares due to error (SSE)

Technical side note (not needed in our class)

- The equations for calculating the $\widehat{m{eta}}$ values is best done using matrix notation (not required for our class)
- We will be using R to get the coefficients instead of the equation (already did this a few slides back!)
- How we have represented the population regression model:

LINE model assumptions

[L] Linearity of relationship between variables

The mean value of Y given any combination of X_1, X_2, \ldots, X_k values, is a linear function of $\beta_0, \beta_1, \beta_2, \ldots, \beta_k$: E(Y|X) $\mu_{Y|X_1,\ldots,X_k} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$

[I] Independence of the Y values

Observations (X_1, X_2, \ldots, X_k, Y) are independent from one another

[N] Normality of the Y's given X (residuals)

Y has a normal distribution for any any combination of X_1, X_2, \ldots, X_k values

• Thus, the residuals are normally distributed

[E] Equality of variance of the residuals (homoscedasticity)

The variance of Y is the same for any any combination of X_1, X_2, \ldots, X_k values

$$\sigma^2_{Y|X_1,X_2,\ldots,X_k} = Var(Y|X_1,X_2,\ldots,X_k) = \sigma^2$$

Summary of the LINE assumptions

- Equivalently, the residuals are independently and identically distributed (iid):
 - normal
 - with mean 0 and
 - constant variance σ^2

$\widehat{\beta}_{o} + \widehat{\beta}_{i} \times_{i} + \widehat{\beta}_{2} \times_{2} = \widehat{\Upsilon}$ Variation: Explained vs. Unexplained n

$$\sum_{i=1}^{n} (Y_i - ar{Y})^2 = \sum_{i=1}^{n} (\widehat{Y}_i - ar{Y})^2 + \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 + SSY = SSR + SSE$$

SY $Y_i - \overline{Y}$ = the deviation of Y_i around the mean \overline{Y} • (the **total** amount deviation unexplained at X_{i1}, \ldots, X_{ik}).

- SSE $Y_i \hat{Y}_i$ = the deviation of the observation Y around the fitted regression line (the amount deviation **unexplained** by the regression at X_{i1}, \ldots, X_{ik}).

 - $\widehat{Y}_i \overline{Y}$ = the deviation of the fitted value \widehat{Y}_i around the mean \overline{Y}
- SSR (the amount deviation **explained** by the regression at X_{i1}, \ldots, X_{ik}).

Building the ANOVA table

ANOVA table (\underline{k} = # of predictors, n = # of observations)

1 <u>anova(mr</u>1) %>% tidy() %>% gt() %>%

2 tab_options(table.font.size = 40) %>% fmt_number(decimals = 3)

term	df	sumsq	meansq	statistic	p.value
FemaleLiteracyRate	1.000 1,9	934.245	1,934.245	66.547	0.000
FoodSupplykcPPD	1.000	649.319	649.319	22.339	0.000
Residuals	69.000 2,0	005.556	29.066	NA	NA

Learning Objectives

1. Understand equations and visualizations that helps us build multiple linear regression model.

2. Fit MLR model (in R) and understand the difference between fitted regression plane and regression lines.

3. Identify the population multiple linear regression model and define statistics language for key notation.

4. Based off of previous SLR work, understand how the population MLR is estimated.

5. Interpret MLR (population) coefficient estimates with additional variable in model

Interpreting the estimated population coefficients

Poll Everywhere Question 4

Let's say I have the following fitted model for the life expectancy example: $\widehat{LE} = 33.595 + 0.157 FLR - 0.071 FS$ What is the most appropriate interpretation for the coefficient for food supply?

Ø

For every 1 kcal PPD increase in the food supply, adjusting for female lit...

For every 1 kcal PPD increase in the food supply, adjusting for female lit...

Adjusting for female literacy rate, for every 1 kcal PPD increase in the fo...

For every 1 kcal PPD increase in the food supply, there is an expected de...

For every 1 kcal PPD increase in the see MORE y, there is an expected de...

Getting these interpretations from our regression table

We fit the regression model in R and printed the regression table:

```
1 mr1 <- lm(LifeExpectancyYrs ~ FemaleLiteracyRate + FoodSupplykcPPD,</pre>
2
```

data = gapm sub)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	33.595	4.472	7.512	0.000	24.674	42.517
FemaleLiteracyRate	0.157	0.032	4.873	0.000	0.093	0.221
FoodSupplykcPPD	0.008	0.002	4.726	0.000	0.005	0.012

Fitted multiple regression model: $\widehat{ ext{LE}} = 33.595 + 0.157 ext{ FLR} + 0.008 ext{ FS}$

Interpretation for β_0

The expected if expectancy is 33.595 years when the female literacy rate is 0% and food supply is 0 kcal PPD (95% CI: 24.674, 41.517).

Interpretation for β_1

For every 1% increase in the female literacy rate, adjusting for food supply, there is an expected increase of 0.157 years in the life expectancy (95%: 0.093, 0.221).

Interpretation for β_2

For every 1 kcal PPD increase in the food supply, adjusting for female literacy rate, there is an expected increase of 0.008 years in life expectancy (95%: 0.005, 0.012).

Let's just examine the general interpretation vs. the example

General interpretation for \widehat{eta}_0

The expected Y-variable is ($\hat{\beta}_0$ units) when the X_1 -variable is 0 X_1 -units and X_2 -variable is 0 X_1 -units (95% CI: LB, UB).

General interpretation for \widehat{eta}_1

For every increase of 1 X_1 -unit in the X_1 variable, adjusting/controlling for X_2 -variable, there is an expected increase/decrease of $|\hat{\beta}_1|$ units in the Y-variable (95%: LB, UB).

General interpretation for \widehat{eta}_2

For every increase of 1 X_2 -unit in the X_2 variable, adjusting/controlling for X_1 -variable, there is an expected increase/decrease of $|\hat{\beta}_2|$ units in the Y-variable (95%: LB, UB).

Interpretation for \widehat{eta}_0

The expected life expectancy is 33.595 years when the female literacy rate is 0% and food supply is 0 0 kcal PPD (95% CI: 24.674, 41.517).

Interpretation for \widehat{eta}_1

For every 1% increase in the female literacy rate, adjusting for food supply, there is an expected increase of 0.157 years in the life expectancy (95%: 0.093, 0.221).

Interpretation for \widehat{eta}_2

For every 1 kcal PPD increase in the food supply, adjusting for female literacy rate, there is an expected increase of 0.008 years in life expectancy (95%: 0.005, 0.012).