
Interactions
Nicky Wakim

2024-02-14

1Interactions

 



Learning Objectives
1. DeØne confounders and effect modiØers, and how they interact with the main relationship we model.

2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate,
and how the main variable’s effect changes.

3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous
covariate, and how the main variable’s effect changes.

4. Interpret the interaction component of a model with two categorical covariates, and how the main variable’s
effect changes.

Next time:

5. Interpret the interaction component of a model with two continuous covariates, and how the main variable’s
effect changes.

6. When there are only two covariates in the model, test whether one is a confounder or effect modiØer.
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Let’s map that to our regression analysis process

Model Selection

Building a model

Selecting variables

Prediction vs
interpretation

Comparing potential
models

Model Fitting

Find best Øt line

Using OLS in this class

Parameter estimation

Categorical covariates

Interactions

Model Evaluation

Evaluation of model Øt

Testing model assumptions

Residuals

Transformations

InÙuential points

Multicollinearity

Model Use (Inference)

Inference for coefØcients

Hypothesis testing for coefØcients

Inference for expected  given 
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Recall our data and the main relationship
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Learning Objectives
1. DeØne confounders and effect modiØers, and how they interact with the main relationship we model.

2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate,
and how the main variable’s effect changes.

3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous
covariate, and how the main variable’s effect changes.

4. Interpret the interaction component of a model with two categorical covariates, and how the main variable’s
effect changes.
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What is a confounder?
A confounding variable, or confounder, is a factor/variable that wholly or partially accounts for the observed
effect of the risk factor on the outcome

A confounder must be…

Related to the outcome Y, but not a consequence of Y

Related to the explanatory variable X, but not a consequence of X
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Including a confounder in the model
In the following model we have two variables,  and 

And we assume that every level of the confounder, there is parallel slopes

Note: to interpret , we did not specify any value of ; only speciØed that it be held constant

Implicit assumption: effect of  is equal across all values of 

The above model assumes that  and  do not interact (with respect to their effect on )

epidemiology: no “effect modiØcation”

meaning the effect of  is the same regardless of the values of 
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Where have we modeled a confounder before?
We have seen a plot of Life expectancy vs. female
literacy rate with different levels of food supply
colored (Lesson 8)

In our plot and the model, we treat food supply as a
confounder

If food supply is a confounder in the relationship
between life expectancy and female literacy rate, then
we only use main effects in the model:
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Poll everywhere question 1
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What is an e}ect modi�er?
An additional variable in the model

Outside of the main relationship between  and 
that we are studying

An effect modiØer will change the effect of  on 
depending on its value

Aka: as the effect modiØer’s values change, so does
the association between  and 

So the coefØcient estimating the relationship
between  and  changes with another variable
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How do we include an e}ect modi�er in the model?
Interactions!!

We can incorporate interactions into our model through product terms:

Terminology:

main effect parameters: 

The main effect models estimate the average  and  effects

interaction parameter: 
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Types of interactions / non-interactions
Common types of interactions:

Synergism:  strengthens the  effect

Antagonism:  weakens the  effect

 

If the interaction coefØcient is not signiØcant

No evidence of effect modiØcation, i.e., the effect of
 does not vary with 

 

If the main effect of  is also not signiØcant

No evidence that  is a confounder
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Learning Objectives
1. DeØne confounders and effect modiØers, and how they interact with the main relationship we model.

2. Interpret the interaction component of a model with a binary categorical covariate and continuous
covariate, and how the main variable’s effect changes.

3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous
covariate, and how the main variable’s effect changes.

4. Interpret the interaction component of a model with two categorical covariates, and how the main variable’s
effect changes.
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Do we think income level is an e}ect modi�er for female literacy rate?
Let’s say we only have two income groups:
low income and high income

We can start by visualizing the
relationship between life expectancy and
female literacy rate by income level

 

Questions of interest: Is the effect of
female literacy rate on life expectancy
differ depending on income level?

This is the same as: Is income level is an
effect modiØer for female literacy rate?

 

Let’s run an interaction model to see!
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Model with interaction between a binary categorical and continuous
variables
Model we are Øtting:

 as life expectancy

 as female literacy rate (continuous variable)

 as the indicator that income level is “high income” (binary categorical variable)

In R:

OR

m_int_inc2 = lm(LifeExpectancyYrs ~ FemaleLiteracyRate + income_levels2 +1
                  FemaleLiteracyRate*income_levels2, data = gapm_sub)2

m_int_inc2 = lm(LifeExpectancyYrs ~ FemaleLiteracyRate*income_levels2, 1
                data = gapm_sub)2
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Displaying the regression table and writing �tted regression equation
tidy(m_int_inc2, conf.int=T) %>% gt() %>% tab_options(table.font.size = 35) %>% fmt_1
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Poll Everywhere Question 2
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Comparing �tted regression lines for each income level

For lower income countries: For higher income countries: 
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Let’s take a look back at the plot

For lower income countries: 

For higher income countries: 
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Interpretation for interaction between binary categorical and continuous
variables

Interpretation:

 = mean change in female literacy rate’s effect, comparing higher income to lower income levels

where the “female literacy rate effect” equals the change in mean life expectancy per percent increase in
female literacy with income level held constant, i.e. “adjusted female literacy rate effect”

In summary, the interaction term can be interpreted as “difference in adjusted female literacy rate effect
comparing higher income to lower income levels”

It will be helpful to test the interaction to round out this interpretation!!
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Test interaction between binary categorical and continuous variables
We run an F-test for a single coefØcient ( ) in the below model (see lesson 9, MLR: Inference / F-test)

Null Alternative 

Null / Smaller / Reduced model Alternative / Larger / Full model

I’m going to be skipping steps so please look back at Lesson 9 for full steps (required in HW 4)
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Test interaction between binary categorical and continuous variables
Fit the reduced and full model

Display the ANOVA table with F-statistic and p-value

Conclusion: There is not a signiØcant interaction between female literacy rate and income level (p = 0.168).

If signiØcant, we say more: For higher income levels, for every one percent increase in female literacy rate,
the mean life expectancy increases 0.384 years. For lower income levels, for every one percent increase in
female literacy rate, the mean life expectancy increases 0.156 years. Thus, the female literacy rate almost
doubles comparing high income to low income levels.

m_int_inc_red = lm(LifeExpectancyYrs ~ FemaleLiteracyRate + income_levels2, 1
                   data = gapm_sub)2
m_int_inc_full = lm(LifeExpectancyYrs ~ FemaleLiteracyRate + income_levels2 +3
                  FemaleLiteracyRate*income_levels2, data = gapm_sub)4
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Learning Objectives
1. DeØne confounders and effect modiØers, and how they interact with the main relationship we model.

2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate,
and how the main variable’s effect changes.

3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous
covariate, and how the main variable’s effect changes.

4. Interpret the interaction component of a model with two categorical covariates, and how the main variable’s
effect changes.
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Do we think world region is an e}ect modi�er for female literacy rate?
We can start by visualizing the
relationship between life expectancy and
female literacy rate by world region

Questions of interest: Does the effect of
female literacy rate on life expectancy
differ depending on world region?

This is the same as: Is world region is an
effect modiØer for female literacy rate?

Let’s run an interaction model to see!
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Model with interaction between a multi-level categorical and continuous
variables
Model we are Øtting:

 as life expectancy

 as female literacy rate (continuous variable)

, ,  as the indicator for each world region

In R:

OR

m_int_wr = lm(LifeExpectancyYrs ~ FemaleLiteracyRate + four_regions +1
                  FemaleLiteracyRate*four_regions, data = gapm_sub)2

m_int_wr = lm(LifeExpectancyYrs ~ FemaleLiteracyRate*four_regions, 1
                data = gapm_sub)2
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Displaying the regression table and writing �tted regression equation
tidy(m_int_wr, conf.int=T) %>% gt() %>% tab_options(table.font.size = 35) %>% fmt_nu1
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Comparing �tted regression lines for each world region

Africa The Americas Asia Europe
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Poll Everywhere Question 3
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Centering continuous variables when we are including interactions
For Europe, the mean life expectancy had a regression line with a large intercept

Centering the continuous variables in a model (when they are involved in interactions) helps with:

Interpretations of the coefØcient estimates

Correlation between the main effect for the variable and the interaction that it is involved with

To be discussed in future lecture: leads to multicollinearity issues

Other online sources about when and when not to center:

The why and when of centering continuous predictors in regression modeling

When not to center a predictor variable in regression
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https://www.goldsteinepi.com/blog/thewhyandwhenofcenteringcontinuouspredictorsinregressionmodeling/index.html
https://www.theanalysisfactor.com/when-not-to-center-a-predictor-variable-in-regression/


It’ll be helpful to center female literacy rate
Centering female literacy rate:

Centering in R:

I’m going to print the mean so I can use it for my interpretations

Now all intercept values (in each respective world region) will be the mean life expectancy when female
literacy rate is 82.03%

We will used center FLR for the rest of the lecture

gapm_sub = gapm_sub %>% 1
  mutate(FLR_c = FemaleLiteracyRate - mean(FemaleLiteracyRate))2

(mean_FLR = mean(gapm_sub$FemaleLiteracyRate))1
[1] 82.03056
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Now we re�t the model with the centered FLR

What changed? What stayed the same? What’s the new intercept for Europe?

m_int_wr_flrc = lm(LifeExpectancyYrs ~ FLR_c*four_regions, 1
                data = gapm_sub)2
tidy(m_int_wr_flrc, conf.int=T) %>% gt() %>% tab_options(table.font.size = 35) %>% 3
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Interpretation for interaction between multi-level categorical and
continuous variables

Interpretation:

 = mean change in female literacy rate’s effect, comparing countries in the Americas to countries in Africa

 = mean change in female literacy rate’s effect, comparing countries in Asia to countries in Africa

 = mean change in female literacy rate’s effect, comparing countries in Europe to countries in Africa

It will be helpful to test the interaction to round out this interpretation!!
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Test interaction between multi-level categorical & continuous variables
We run an F-test for a group of coefØcients ( , , ) in the below model (see lesson 9)

Null Alternative 

 and/or  and/or 

Null / Smaller / Reduced model Alternative / Larger / Full model
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Test interaction between multi-level categorical & continuous variables
Fit the reduced and full model

Display the ANOVA table with F-statistic and p-value

Conclusion: There is not a signiØcant interaction between female literacy rate and income level (p = 0.478).

m_int_wr_red = lm(LifeExpectancyYrs ~ FLR_c + four_regions, 1
                   data = gapm_sub)2
m_int_wr_full = lm(LifeExpectancyYrs ~ FLR_c + four_regions+3
                  FLR_c*four_regions, data = gapm_sub)4
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Learning Objectives
1. DeØne confounders and effect modiØers, and how they interact with the main relationship we model.

2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate,
and how the main variable’s effect changes.

3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous
covariate, and how the main variable’s effect changes.

4. Interpret the interaction component of a model with two categorical covariates, and how the main variable’s
effect changes.
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Do we think income level can be an e}ect modi�er for world region?
Taking a break from female literacy rate to
demonstrate interactions for two categorical
variables

We can start by visualizing the relationship between
life expectancy and world region by income level

Questions of interest: Does the effect of world region
on life expectancy differ depending on income level?

This is the same as: Is income level an effect
modiØer for world region?

Let’s run an interaction model to see!
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Model with interaction between a multi-level categorical and continuous
variables
Model we are Øtting:

 as life expectancy

 as indicator of high income

, ,  as the indicator for each world region

In R:

# gapm_sub = gapm_sub %>% mutate(income_levels2 = relevel(income_levels2, ref = "Hi1
2

m_int_wr_inc = lm(LifeExpectancyYrs ~ income_levels2 + four_regions +3
                  income_levels2*four_regions, data = gapm_sub)4
m_int_wr_inc = lm(LifeExpectancyYrs ~ income_levels2*four_regions, 5
                data = gapm_sub)6
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Displaying the regression table and writing �tted regression equation
tidy(m_int_wr_inc, conf.int=T) %>% gt() %>% tab_options(table.font.size = 25) %>% fm1
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Poll Everywhere Question 4
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Comparing �tted regression means for each world region

Africa The Americas Asia Europe
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Comparing �tted regression means for each income level

For lower income countries: For higher income countries: 
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Let’s take a look back at the plot

For lower income countries: 

For higher income countries: 
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Interpretation for interaction between two categorical variables

Interpretation:

 = mean change in the Africa’s life expectancy, comparing high income to low income countries

 = mean change in the Americas’ effect, comparing high income to low income countries

 = mean change in Asia’s effect, comparing high income to low income countries

 = mean change in Europe’s effect, comparing high income to low income countries

48Interactions



Test interaction between two categorical variables
We run an F-test for a group of coefØcients ( , , ) in the below model (see lesson 9)

Null Alternative 

 and/or  and/or 

Null / Smaller / Reduced model Alternative / Larger / Full model

49Interactions



Test interaction between multi-level categorical & continuous variables
Fit the reduced and full model

Display the ANOVA table with F-statistic and p-value

Conclusion: There is not a signiØcant interaction between female literacy rate and income level (p = 0.928).

m_int_wr_inc_red = lm(LifeExpectancyYrs ~ income_levels2 + four_regions, 1
                   data = gapm_sub)2
m_int_wr_inc_full = lm(LifeExpectancyYrs ~ income_levels2 + four_regions +3
                          income_levels2*four_regions, data = gapm_sub)4
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Next time (hour before quiz)
Go back to the remaining learning objectives:

5. Interpret the interaction component of a model with two continuous covariates, and how the main variable’s
effect changes.

6. When there are only two covariates in the model, test whether one is a confounder or effect modiØer.
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