Lesson 11: Interactions Continued

Nicky Wakim 2024-02-26

Learning Objective

5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.

6. When there are only two covariates in the model, test whether one is a confounder or effect modifier.

Do we think food supply is an effect modifier for female literacy rate?

- We can start by visualizing the relationship between life expectancy and female literacy rate by food supply
- Questions of interest: Does the effect of female literacy rate on life expectancy differ depending on food supply?
 - This is the same as: Is food supply is an effect modifier for female literacy rate? Is food supply an effect modifier of the association between life expectancy and female literacy rate?
- Let's run an interaction model to see!

Model with interaction between *two continuous variables*

Model we are fitting:

$$LE = \beta_0 + \beta_1 FLR^{\bigcirc} + \beta_2 FS^{\bigcirc} + \beta_3 FLR^{\bigcirc} \cdot FS^{\bigcirc} + \epsilon$$

main effects interaction

- LE as life expectancy
- FLR^C as the **centered** around the mean female literacy rate (continuous variable)
- FS° as the **centered** around the mean food supply (continuous variable)
- ► Code to center FLR and FS

Displaying the regression table and writing fitted regression equation

Poll Everywhere Question??

Interpretation for interaction between two continuous variables

$$\widehat{LE} = \widehat{\beta}_0 + \widehat{\beta}_1 FLR^c + \widehat{\beta}_2 FS^c + \widehat{\beta}_3 FLR^c \cdot FS^c$$

$$\widehat{LE} = \left[\widehat{\beta}_0 + \widehat{\beta}_2 \cdot FS^c\right] + \left[\widehat{\beta}_1 + \widehat{\beta}_3 \cdot FS^c\right] FLR$$

$$\stackrel{\text{FLR's effect}}{=} 0 - FLR'S \text{ effect};$$
Interpretation:
$$\stackrel{\text{I}}{=} \widehat{\beta}_1 + \widehat{\beta}_3 = \text{mean change in female literacy rate's effect, for every one kcal PPD increase in food supply} \xrightarrow{\widehat{\beta}_1 + 2\widehat{\beta}_3} \widehat{\beta}_1 = \widehat{\beta}_1 + \widehat{\beta}_2 - \widehat{\beta}_2 + 2\widehat{\beta}_3$$
In summary, the interaction term can be interpreted as "difference in adjusted female literacy rate effect for every 1 kcal PPD increase in food supply"

• It will be helpful to test the interaction to round out this interpretation!!

Test interaction between two continuous variables

• We run an F-test for a single coefficients (β_3) in the below model (see lesson 9)

$$\begin{array}{l} \text{interaction} \ LE = \beta_0 + \beta_1 FLR^c + \beta_2 FS^c + \beta_3 FLR^c \cdot FS^c + \epsilon \\ \text{modul} \end{array}$$

Null / Smaller / Reduced modelAlternative / Larger / Full model
$$LE = \beta_0 + \beta_1 FLR^c + \beta_2 FS^c + \epsilon$$
 $LE = \beta_0 + \beta_1 FLR^c + \beta_2 FS^c + \epsilon$

Test interaction between two continuous variables

• Fit the reduced and full model

Display the ANOVA table with F-statistic and p-value

• Conclusion: There is not a significant interaction between female literacy rate and food supply (p = 0.945). Food supply is not an effect modifier of the association between female literacy rate and life expectancy.

11

Learning Objective

5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.

6. When there are only two covariates in the model, test whether one is a confounder or effect modifier.

Deciding between confounder and effect modifier

- This is more of a model selection question (in coming lectures)
- $Y = \beta_0 + \beta_1 X_1 + \beta_2$ • But if we had a model with only TWO covariates, we could step through the following process:
- -> 1. Test the interaction (of potential effect modifier): use a partial F-test to test if interaction term(s) explain enough variation compared to model without interaction G (unless single coeff, efficient then you can also cient use +-toot)

 $X_1 \& X_2$

(1) $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

- Recall that for two continuous covariates, we will test a single coefficient
- For a binary and continuous covariate, we will test a single coefficient
- For two binary categorical covariates, we will test a single coefficient
- For a multi-level categorical covariate with any other type of covariate), we must test a group of (cannot use +-test coefficients!!
- 2. Then look at the main effect (or potential confounder)
 - If interaction already included, then automatically included as main effect (and thus not checked for confounding)
 - For variables that are not included in any interactions: (interaction not sig)
 - Check to see if they are confounders by seeing whether exclusion of the variable changes any of the main effect of the primary explanatory variable by more than 10%

Reminder from Lesson 9: General steps for F-test

connect to reduced

vs $\beta_1 \neq 0$

1. Met underlying LINE assumptions

 $\frac{1}{2}$ 2. State the null hypothesis $\sqrt{1}$

لح

ing

include

$$H_0:eta_1=eta_2=\ldots=eta_k=0 \ ext{ s. } H_A: ext{ At least one } eta_j
eq 0, ext{ for } j=1,2,\ldots,k$$

3. Specify the significance level.

Often we use lpha=0.05 🗸

4. Specify the test statistic and its distribution under the null 🧹

The test statistic is F, and follows an F-distribution with numerator df = k and denominator df = n - k - 1. (n = # obversation, k = # covariates) 5. Compute the value of the test statistic

The calculated **test statistic** is \checkmark

$$F^{=}rac{SSE(R)-SSE(F)}{df_R-df_F}}{rac{SSE(F)}{df_F}}=rac{MSR_{full}}{MSE_{full}}$$

6. Calculate the p-value $\sqrt{}$

We are generally calculating: $P(F_{k,n-k-1} > F)$

7. Write conclusion for hypothesis test $\sqrt{}$

We (reject/fail to reject) the null hypothesis at the $100 \alpha\%$ significance level.

Step 1: Testing the interaction

- We test with $\alpha = 0.10$ in model selection model
- Follow the F-test procedure in Lesson 9 (MLR: Inference/F-test)
 - This means we need to follow the 7 steps of the general F-test in previous slide (taken from Lesson 9)
- Use the hypothesis tests for the specific variable combo:

Binary & continuous variable (Lesson 11, LOB 2)

Testing a <u>single coefficient</u> for the interaction term using F-test comparing full model to reduced model Multi-level & continuous variables (esson 11, LOB 3)

 $full: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$

 $=\beta_0+\beta_1\times_1+\beta_2\times_2$

+ 8

Testing group of coefficients for the interaction terms using F-test comparing full to reduced model

Binary & multi-level variable (Lesson 11, LOB 4)

Testing group of coefficients for the interaction terms using F-test comparing full to reduced model

Two continuous variables (Lesson 11, LOB 5)

Testing a single coefficient for the interaction term using F-test comparing full to reduced model

Poll Everywhere Questions 2-4

ordinal 5 multi-level ordinal 5 choose to score 3 continuous/ numerical

Interactions 2

We leave the variable out of the model

step 2 (testing confounder) Testing for percent change (Δ %) in a coefficient of X₁ (variable of interest) • Let's say we have X_1 and X_2 and we specifically want to see if X_2 is a confounder for X_1 (the explanatory variable or variable of interest) • If we are only considering X_1 and X_2 , then we need to run the following two models: (in step λ) • Fitted model 1 / reduced model (mod 1): $\widehat{Y} = \widehat{\beta}_0 \widehat{X}_1$ excluding X2 • We call the above $\hat{\beta}_1$ the reduced model coefficient: $\hat{\beta}_{1,\text{mod}1}$ or $\hat{\beta}_{1,\text{red}1}$ • Fitted model 2 / Full model (mod 2): $\widehat{Y} = \widehat{\beta}_0 - \widehat{\beta}_1 X_1 - \widehat{\beta}_2 X_2$ including • We call this β_1 the full model coefficient: $\beta_{1, \text{mod}2}$ or $\beta_{1, \text{full}}$

prev slides: is FS an effect Step 2: Is food supply a confounder for female literacy rate? (1/3) mod of FLR? 1. Run models with and without food supply: (as a main effect) (STEP 1) • Model 1 (reduced): $LE = \beta_0 + \beta_1 F L R^c + \epsilon$ 1 mod1 red = lm(LifeExpectancyYrs ~ FLR c, data = gapm sub) ---• Model 2 (full): $LE = eta_0 + eta_1 FLR^c + eta_2 FS^c + \epsilon$ 1 mod2 full = lm(LifeExpectancyYrs ~ FLR c + FS_c, data = gapm_sub)

• Note that the full model when testing for confounding was the reduced model for testing an interaction

• Full and reduced are always relative qualifiers of the models that we are testing

Is food supply a confounder for female literacy rate? (2/3)

2. Record the coefficient estimate for centered female literacy rate in both models: • Model 1 (reduced):

111.							•
model 1.	term	estimate	std.error	statistic	p.value	conf.low	conf.high
reducia	(Intercept)	70.29722	0.72578	96.85709	0.00000	68.84969	71.74475
	FLR_c	0.22990	0.03219	7.14139	0.00000	0.16570	0.29411

• Model 2 (full):

 term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	70.29722	0.63537	110.63985	0.00000	69.02969	71.56475
FLR_c	0.15670	0.03216	4.87271	0.00001	0.09254	0.22085
FS_c	0.00848	0.00179	4.72646	0.00001	0.00490	0.01206

3. Calculate the percent change:

$$\overbrace{\Delta\%}^{}=100\%\cdot\frac{\widehat{\beta}_{1,\text{mod}1}-\widehat{\beta}_{1,\text{mod}2}}{\widehat{\beta}_{1,\text{mod}2}}=100\%\cdot\frac{0.22990-0.15670}{0.15670}=46.71\%$$

Is food supply a confounder for female literacy rate? (3/3)

The percent change in female literacy rate's coefficient estimate was 46.71%. $46.71\% \geq 0\%$ Thus, food supply is a confounder of female literacy rate in the association between life expectancy and female literacy rate.

Let's try this out on one of our potential effect modifiers or confounders

- Look back at income level and world region: is income level an **effect modifier, confounder, or has no effect** on the association between life expectancy and world region?
- We can start by visualizing the relationship between life expectancy and world region by income level
- So we'll need to revisit the work we did in previous slides on the interaction, then check fo condounding

Determining if income level is an effect modifier, confounder, or neither

- Step 1: Testing the interaction/effect modifier
 - Compare model with and without interaction using F-test to see if interaction is significant
 Models
 - Models

 \circ Model 1 (red): $LE = \beta_0 + \beta_1 I(\text{Americas}) + \beta_2 I(\text{Asia}) + \beta_3 I(\text{Europe}) + \beta_4 I(\text{high income}) + \epsilon$

 $\begin{array}{ll} & LE = \beta_0 + \beta_1 I(\operatorname{Americas}) + \beta_2 I(\operatorname{Asia}) + \beta_3 I(\operatorname{Europe}) + \beta_4 I(\operatorname{high income}) + \\ & \circ \operatorname{\mathsf{Model 2 (full):}} & \beta_5 \cdot I(\operatorname{high income}) \cdot I(\operatorname{Americas}) + \beta_6 \cdot I(\operatorname{high income}) \cdot I(\operatorname{Asia}) + \\ & & \beta_7 \cdot I(\operatorname{high income}) \cdot I(\operatorname{Europe}) + \epsilon \end{array}$

- Step 2: Testing a confounder (only if not an effect modifier)
 - Compare model with and without main effect for additional variable (income level) using Additional variable (income level) is a confounder
 - Models
 - \circ Model 1 (reduced): $LE=eta_0+eta_1I(ext{Americas})+eta_2I(ext{Asia})+eta_3I(ext{Europe})+\epsilon$
 - \circ Model 2 (full): $LE = eta_0 + eta_1 I(ext{Americas}) + eta_2 I(ext{Asia}) + eta_3 I(ext{Europe}) + eta_4 I(ext{high income}) + \epsilon$

 $\wedge^{0}/_{0}$

Step 1: Results from Lesson 11 LOB 4

• Fit the reduced and full model

<pre>m_int_wr_inc_red = lm(LifeExpectancyYrs ~ income_levels2 + four_regions, data = gapm sub)</pre>									
3 m_int_wr_inc_full = lm(LifeExpectancyYrs ~ income_levels2 + four_regions + 4 income_levels2*four_regions, data = gapm_sub)									
• Display the ANOVA table with F	statistic and p-value								
term		df.residual	rs	s d	f sumsq	statistic	p.value		
LifeExpectancyYrs ~ income_levels2 + for	our_regions	67.000	1,693.24	2 NA	A NA	NA	NA		
LifeExpectancyYrs ~ income_levels2 + fo four_regions	our_regions + income_levels2	* 64.000	1,681.30	4 3.000) 11.938	0.151	0.928		
						F	ייא		

- Conclusion: There is not a significant interaction between world region and income level (p = 0.928).
- Thus, income level is not an effect modifier of world region. However, we can continue to test if income level is a confounder.

4

• Fit the reduced and full model for testing the confounder

• Model 1 (reduced): $LE = \beta_0 + \beta_1 I(\operatorname{Americas}) + \beta_2 I(\operatorname{Asia}) + \beta_3 I(\operatorname{Europe}) + \epsilon$

• Model 2 (full): $LE = \beta_0 + \beta_1 I(\text{Americas}) + \beta_2 I(\text{Asia}) + \beta_3 I(\text{Europe}) + \beta_4 I(\text{high income}) + \epsilon$

- Record the coefficient estimate for centered female literacy rate in both models:
- Model 1 (reduced): $\widehat{LE} = \widehat{\beta}_0 + \widehat{\beta}_1 I$ (Americas) $+ \widehat{\beta}_2 I$ (Asia) $+ \widehat{\beta}_3 I$ (Europe)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	61.27000	1.16508	52.58870	0.00000	58.94512	63.59488
four_regionsAmericas	14.33000	1.90257	7.53193	0.00000	10.53349	18.12651
four_regionsAsia	8.11824	1.71883	4.72313	0.00001	4.68837	11.54810
four_regionsEurope	14.78217	1.59304	9.27924	0.00000	11.60332	17.96103

• Model 2 (full):
$$\widehat{LE} = \widehat{\beta}_0 + \widehat{\beta}_1 I$$
 (Americas) $+ \widehat{\beta}_2 I$ (Asia) $+ \widehat{\beta}_3 I$ (Europe) $+ \widehat{\beta}_4 I$ (high income)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	60.54716	1.16190	52.11048	0.00000	58.22800	62.86632
four_regionsAmericas	12.04102	2.05816	5.85038	0.00000	7.93292	16.14912
four_regionsAsia	7.77808	1.66414	4.67394	0.00001	4.45645	11.09971
four_regionsEurope	12.51938	1.79139	6.98864	0.00000	8.94375	16.09501
income_levels2Higher incom	e 3.61419	1.46967	2.45917	0.01651	0.68070	6.54767

• Calculate the percent change for \widehat{eta}_1 :

$$\Delta\% = 100\% \cdot \frac{\widehat{\beta}_{1,\text{mod}1} - \widehat{\beta}_{1,\text{mod}2}}{\widehat{\beta}_{1,\text{mod}2}} = 100\% \cdot \frac{\underline{14.33000} - \underline{12.04102}}{\underline{12.04102}} = \underbrace{19.01}_{} \text{\%}$$

• Calculate the percent change for $\widehat{\beta}_2$:

$$\Delta\% = 100\% \cdot rac{\widehat{eta}_{2,\mathrm{mod}1} - \widehat{eta}_{2,\mathrm{mod}2}}{\widehat{eta}_{2,\mathrm{mod}2}} = 100\% \cdot rac{8.11824 - 7.77808}{7.77808} = 4.37$$

• Calculate the percent change for $\widehat{\beta}_3$:

$$\Delta\% = 100\% \cdot \frac{\widehat{\beta}_{3,\text{mod}1} - \widehat{\beta}_{3,\text{mod}2}}{\widehat{\beta}_{3,\text{mod}2}} = 100\% \cdot \frac{14.78217 - 12.51938}{12.51938} = 100\% \cdot \frac{14.78217 - 12.51938}{12.519} = 100\% \cdot \frac{14.78217 - 12.519}{12.519} = 100\% \cdot \frac{14.78217 - 12.519}{12.519} = 100\% \cdot \frac{$$

• Note that two of these % changes are greater than 10%, and one is less than 10%...

- There is no set rule when we have more than one estimated coefficient that we examine for confoundeing
- In this, I would consider
 - The majority of coefficients (2/3 coefficients) changes more than 10%
 - The change in coefficients for all three are in the same direction
 - The plot of life expectancy vs world region by income level have a shift in mean life expectancy from lower to higher income level
- Thus, I would conclude that income level is a confounder, so we would leave income level's main effect in the model

If you want extra practice

• Try out this procedure to determine if a variable is an effect modifier or confounder or nothing on the other interactions we tested out in Lesson 11

Extra Reference Material

General interpretation of the interaction term (reference)

- Interpretation:
 - β_3 = mean change in X_1 's effect, per unit increase in X_2 ;
 - = mean change in X_2 's effect, per unit increase in X_1 ;
 - where the " X_1 effect" equals the change in E[Y] per unit increase in X_1 with X_2 held constant, i.e. "adjusted X_1 effect"
- In summary, the interaction term can be interpreted as "difference in adjusted X_1 (or X_2) effect per unit increase in X_2 (or X_1)"

A glimpse at how interactions might be incorporated into model selection

- 1. Identify outcome (Y) and primary explanatory (X) variables
- 2. Decide which other variables might be important and could be potential confounders. Add these to the model.
 - This is often done by indentifying variables that previous research deemed important, or researchers believe could be important
 - From a statistical perspective, we often include variables that are significantly associated with the outcome (in their respective SLR)
- 3. (Optional step) Test 3 way interactions
 - This makes our model incredibly hard to interpret. Our class will not cover this!!
 - We will skip to testing 2 way interactions
- 4. Test 2 way interactions
 - When testing a 2 way interaction, make sure the full and reduced models contain the main effects
 - First test all the 2 way interactions together using a partial F-test (with alpha = 0.10)
 - If this test not significant, do not test 2-way interactions individually
 - If partial F-test is significant, then test each of the 2-way interactions
- 5. Remaining main effects to include of not to include?
 - For variables that are included in any interactions, they will be automatically included as main effects and thus not checked for confounding
 - For variables that are not included in any interactions:
 - Check to see if they are confounders by seeing whether exclusion of the variable(s) changes any of the coefficient of the primary explanatory variable (including interactions) X by more than 10%
 - If any of X's coefficients change when removing the potential confounder, then keep it in the model

Interactions 2