Chapter 24: Continuous RVs and PDFs
What is a cumulative distribution function?
Cumulative distribution function
The cumulative distribution function (cdf) of a continuous random variable \(X\), is the function \(F_X(x)\), such that for all real values of \(x\), \[F_X(x)= \mathbb{P}(X \leq x) = \int_{-\infty}^x f_X(s)ds\]
Remarks: In general, \(F_X(x)\) is increasing and
\(\lim_{x\rightarrow -\infty} F_X(x)= 0\)
\(\lim_{x\rightarrow \infty} F_X(x)= 1\)
\(P(X > a) = 1 - P(X \leq a) = 1 - F_X(a)\)
\(P(a \leq X \leq b) = F_X(b) - F_X(a)\)
Let’s demonstrate the CDF with an example
Example 2
Let \(f_X(x)= 2\), for \(2.5 \leq x \leq 3\). Find \(F_X(x)\).
Derivatives of the CDF
Theorem 1
If \(X\) is a continuous random variable with pdf \(f_X(x)\) and cdf \(F_X(x)\), then for all real values of \(x\) at which \(F'_X(x)\) exists, \[\frac{d}{dx} F_X(x)= F'_X(x) = f_X(x)\]
Finding the PDF from a CDF
Example 3
Let \(X\) be a RV with cdf \[F_X(x)= \left\{ \begin{array}{ll} 0 & \quad x < 2.5 \\ 2x-5 & \quad 2.5 \leq x \leq 3 \\ 1 & \quad x > 3 \end{array} \right.\] Find the pdf \(f_X(x)\).
Let’s go through another example (1/7)
Example 4
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
Show \(f_X(x)\) is a pdf.
Find \(\mathbb{P}(1 \leq X \leq 3)\).
Find \(F_X(x)\).
Given \(F_X(x)\), find \(f_X(x)\).
Find \(\mathbb{P}(X \geq 1 | X \leq 3)\).
Find the median of the distribution of \(X\).
Let’s go through another example (2/7)
Example 4.1
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
- Show \(f_X(x)\) is a pdf.
Let’s go through another example (3/7)
Example 4.2
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
- Find \(\mathbb{P}(1 \leq X \leq 3)\).
Let’s go through another example (4/7)
Example 4.3
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
- Find \(F_X(x)\).
Let’s go through another example (5/7)
Example 4.4
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
- Given \(F_X(x)\), find \(f_X(x)\).
Let’s go through another example (6/7)
Example 4.5
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
- Find \(\mathbb{P}(X \geq 1 | X \leq 3)\).
Let’s go through another example (7/7)
Example 4.6
Let \(X\) be a RV with pdf \(f_X(x)= 2e^{-2x}\), for \(x>0\).
- Find the median of the distribution of \(X\).